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The radiative corrections to order a3 for ir-e scattering have been calculated. The inelastic part of the 
radiative corrections have been realistically handled assuming an experimental setup, much like that of Fitch, 
Leipuner et al. at Brookhaven, where the energies of both final particles are measured. Although large log-
squared terms are found in the results, they are always cancelled by comparable terms. The reason for their 
appearance can be directly related to the nature of the experimental situation. 

I. INTRODUCTION 

AT Brookhaven,1 experiments designed to measure 
the electromagnetic structure effects the ir~ meson 

have recently been performed. Electrons scattered out 
of a target by high-energy (20-25 BeV) TT~ mesons are 
momentum analyzed and counted in coincidence with 
the scattered TT~ mesons. The cross section thus obtained 
when compared with the theoretically calculated cross 
section, assuming the if~ meson to be a point source, 
yields information on the structure of the if~ meson, i.e., 
its electromagnetic form factor. The purpose of this 
paper is to calculate the quantum electrodynamic parts 
of the radiative corrections for this process. 

This calculation can be separated into two parts: 
elastic and inelastic. Elastic parts refer to those Feyn-
man diagrams which have a final electron and a final 
pion, but no final photons. Inelastic parts refer to those 
diagrams in which, in addition to the final electron and 
pion, a photon is also emitted. Since the final states of 
elastic and inelastic diagrams are different, no inter
ference between them can occur and hence the ob
servable cross section is simply the sum of the elastic 
and inelastic cross sections. 

Once the rules for forming the matrix elements corre
sponding to the Feynman diagrams are given,2 the 
evaluation of the elastic cross section is straightforward. 
The usual renormalization techniques3 are applicable for 
the removal of the so-called ultraviolet divergencies. 
The infrared divergencies are avoided (in the inelastic 
case as well) by assuming a small photon mass X when
ever necessary. Because of energy-momentum conserva
tion expressed by the appearance of the 8 function in the 
final-state integration, this integration is trivial. 

Not so for the inelastic cross section. Since the final 
state here has an additional photon, if we again absorb 

* Supported in part by the U. S. Atomic Energy Commission. 
f Based on a thesis submitted in partial fulfillment of the re

quirements for the degree of Doctor of Philosophy in the Faculty 
of Pure Science, Columbia University. 

{ Present address: University of Notre Dame, Notre Dame, 
Indiana. 

1 These experiments have been carried out by M. Barton, 
D. Cassell, R. Crittendem, V. L. Fitch, and L. Leipuner. 

2 Cf., Silvan S. Schweber, An Introduction to Relativistic Quan
tum Field Theory (Row Peterson and Company, Evanston, 
Illinois, 1961), Sec. 14.c, p. 483, for scalar electrodynamics. 

3 F. J. Dyson, Phys. Rev. 75, 1736 (1949). 

the 8 function in performing the integrations over the 
electron and pion variables, we are yet left to do a 
final-state integration over the photon variables. In 
addition to the complications of this integration per se, 
we have also to determine the region of integration as 
limited by the experimental conditions. 

Let E\ 8f be the energies of the final particles and 
let 0', 6 be their scattering angles, respectively. Clearly, 
for elastic scattering, the condition of energy-momen
tum conservation gives three relations for these four 
quantities and consequently only one is independent. 
In most scattering experiments, one measures, with 
imprecisions, any two of these four quantities and admits 
only those events which agree, within the limitations of 
these imprecisions, with the elastic condition of energy-
momentum conservation. That is to say, the experiment 
relates (albeit loosely) the quantities it measures. 

These scattering experiments can then be divided into 
the following three categories: 

(a) E and 0' or 8' and 9 are measured, i.e., only one 
particle is detected; 

(b) 0' and 6 are measured; 
(c) E' and & are measured. 

The technique for handling case (a) depends on 
whether the heavier or the lighter of the particles is 
detected4 and further depends on which of the angular 
or the energy imprecisions is the larger when properly 
compared. Meister and Yennie5 have given a complete 
treatment of case (a) and Tsai6 has treated case (b). 
Case (c) is the one pertaining to our problem and in this 
sense this paper is to be considered a completion of the 
aforementioned works. 

The main task in performing any radiative correction 
calculation is then to properly transform the relation 
imposed by the experiment (on the measured quantities) 
to a restriction on the region of integration of the final 
photon variables.7 We refer to this region as the experi-

4 A. S. Krass, Phys. Rev. 125, 2172 (1962); Y. S. Tsai, ibid. 
122, 1898 (1961). 

6 N. Meister and D. R. Yennie, Phys. Rev. 130, 1210 (1963). 
6 Y. S. Tsai, Phys. Rev. 120, 269 (1960). 
7 As is pointed out by Tsai in Ref. 6, the radiative corrections 

calculated by M. L. G. Redhead, Proc. Roy. Soc. (London) 
A220, 219 (1953) and R. V. Polovin, Zh. Eksperim. i Teor. Fiz. 
31, 449 (1956) [English transl.: Soviet Phys.—JETP 4, 385 
(1957)], are deficient because the experimental conditions are 
handled unrealistically. 
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mentally restricted region. This transformation is 
always done via the four equations which express 
energy-momentum conservation for the three final 
particles. These equations themselves restrict the region 
of photon integration and we refer to this region as the 
kinematically restricted region. In cases (a) and (b), 
since the experimental relationship involves angles, the 
transformation to the experimentally restricted region 
makes use of all four energy-momentum conservation 
equations. Accordingly, the information contained in 
these equations is already implicit in the resulting ex
perimentally restricted region. That is, for cases (a) and 
(b), the experimentally restricted region is completely 
contained in the kinematically restricted region. 

For case (c) the situation is quite different. Since only 
energies are measured, in transforming to the experi
mentally restricted region the momentum conservation 
equations remain untouched and only the energy equa
tion, viz., 

E'+ &'+o)= constant, (LI) 

where co is the photon energy, is needed. Consequently, 
for case (c), the kinematically restricted region has yet 
to be considered and the intersection of this with the 
experimentally resticted region gives the allowed photon 
region. 

From the linearity of Eq. (1.1) it can be seen that the 
experimentally restricted region is simply the isotropic 
region given by co < AE, where AE is a measure of the 
experimental imprecisions, about which more will be 
said later. The kinematically resticted region, on the 
other hand, is more difficult to arrive at and will be 
discussed in detail in Sec. III. 

The notation used in this paper is nearly identical 
with that of Jauch and Rohrlich.8 The units used are 
h=c=l and e2/4:ir=a. The relativistic notation used 
is such that 

a„= (a,a0), a/f= a, 

ayb
v= a - b = a • b—#o&o. 

The 7„ are 4X4 matrices satisfying the relation 

•q P 

where 
D = 1 

and all other gi/s are zero, p and q refer to the four mo
menta associated with the incoming electron and pion, 
respectively, and primed quantities refer to outgoing 
variables. In the lab system we have 

p={0,m), q=(q,E), p'=(p',S'), <?'=(q',£'). 

The following definitions are constant throughout this 
paper: 

p^=p—p/, qz—q'—q, (pd~qz, for elastic case) 
K=pd

2/2m2, K'^pf/lix2, 
8 J. M. Jauch and F. Rohrlich, The Theory of Photons and 

Electrons (Addison-Wesley Publishing Company, Inc., Cam
bridge, Massachusetts, 1955). 
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FIG. 1. Feynman 
diagrams, to order 
e4, for elastic 
scattering. 
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where fi is the mass of the T~ meson, and m the mass of 
the electron. 

The symbol == is defined by A = B if and only if 

w(p0i4«(p)=tf(p')£«(p), 

where u(p) is the electron spinor. 
Terms like (a/ir) log2 (2 Sf/m) in the radiative cor

rections (which are considered undesirable because they 
cast aspersions on the validity of the perturbation ex
pansion) have been shown by Tsai6 to completely cancel 
for his case when the experimental conditions are real
istically handled. It would appear that our final result 
does contain such a term but this is illusory. For a more 
careful examination of our final result also reveals the 
term — (a/ir) log2(AE/co), where o) is defined in Eq. 
(III. 13). In Sec. IV we shall show that this latter term 
should always be grouped with (a/w) log2 (2 £'/%), and 
the two terms tend to cancel. 

It will be seen that this result arises precisely because 
of the peculiarity of our allowed photon region, i.e., 
because in our case it is possible to distinguish between 
the experimentally and kinematically restricted regions. 
The first term can then be viewed as coming from the 
isotropic experimentally restricted region and the second 
term compensates for this overestimate. Because in 
cases (a) and (b) the two regions blend and are in
distinguishable this compensation (cancellation) takes 
place implicitly. 

II. ELASTIC SCATTERING 

The Feynman diagrams, to order e*, for the scattering 
of electrons by pions are depicted in Fig. 1. 

Let Mi represent the matrix element corresponding 
to diagram (i) of Fig. 1. Then the lowest order matrix 
element (Mi) is given by 

Afi= —c#m(p')(Mp), 
where 

c— ( - ) 
\ 2 T T / pzKESE'S')1'2 

(H.1) 

(11.2) 
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dce 

The elastic scattering cross section dae\, is given by9 

2[(j>?)2-wV]1/2 

X / IdydSq'S^p+q-p'-q')!: M^M, (II.3) 

M is the sum of the matrix elements M,-, i.e., 

*—2 
(II-4) 

Then to order a3 

Jlf+Jf=JfitJlfi+2 Re £ M^AT*. (II.5) 
i=2 

The first term MjMi of Eq. (II.5) gives rise to the 
lowest order contribution to daei and the remaining 
terms are the radiative corrections to order a3. From 
Eq. (II. 1) we get 

£ MfM^chn* £ [tf(pO^(p)]*[«(p')0«(p)] 

= ~\c2 Tx[_(ip~m)Q(ipf-m)Q^c2T, 

and 
r0=2[4to)(^)-Mi2]. 

(IL6) 

(H.7) 

Let J(r0 be the scattering cross section to lowest order. 
Making use of Eq. (II.2) for c we have 

d<ro= 
2[(^)2-(mM)2]1 / 2 

•d*p' f d*q'T0 

S' 
X 

EW 
Kp+q-p'-q'). (H.8) 

With the aid of the space part of the d function the dzq' 
integration in Eq. (II.8) is trivial. There then remains 
to do the integration over dspf = p,SfdQP'dS/. Usually 
the remaining portion of the d function is used to per
form the dS> integration and what results is an expres
sion for da/dti, i.e., cross section per unit sold angle. 
However, in view of what the experiment actually 
measures, the more relevant thing to do is to use the 
remaining portion of the 8 function together with the 
condition of axial symmetry and render the dtip> inte
gration. This then will lead to an expression for da/d8', 
the cross section per unit (scattered electron) energy, 
which is, in fact, what is measured. Thus, for the lab 
system, we get 

dao/dS' = T^To/mqKpz2)2. (II.9) 

The matrix elements arising from diagrams 5-15 of 

Fig. 1 are divergent for large values of the momenta of 
the virtual photons. These divergencies can be removed 
by means of the usual mass and charge renormalization 
procedure.3 Let us define10 

and 

K(Paypb) = (papb) — In ( — ) (11.10) 
Jo py2 \ X 2 / 

h py2 ' 
V>(pa,pb) = (11.11) 

where py~ypa
Jr(i--y)pb> K{payph) contains the infra

red divergence through the appearance of X, the fictitious 
photon mass. 

In terms of K(pa,ph) and n{pa,pb) we may write 

^5-7= (-<*/2T)tK(p,p')-K(p,p) 
~(W+2{pp'))»(p,pf)+2-]Mu 

M 1 5 - ( -a /27r ) [ (10 /9) -K^+^) 2 M(^ , ) ]^ i 

M8_i4= (-a/2*)[K(qrf)-K(q,q) 
-2(qq')n(qq') + r}M1. 

(H.12) 

(11.13) 

(H.14) 

Equation (11.12) comes from the renormalized elec
tron vertex diagrams, and Eq. (11.13) from the re-
normalized electron vacuum-polarization diagram.11 

Equation (11.14) comes from the renormalized meson 
vertex diagrams, and a meson vacuum-polarization 
diagram should logically be included in Fig. 1. However, 
after renormalization this diagram contributes a negli
gible amount and has therefore been omitted.12 

Unfortunately, M2, If3, and if4 cannot be rendered 
into so simple a form as some factor times Mi. These 
two-photon exchange diagrams offer the greatest com
putational difficulties. By applying the rules of corre
spondence we get 

Mc-
where 

/ 2 = " 

Jl 

-c<mu{vf)p^Jtu(v), (i= 2, 3, 4) (11.15) 

{Q+k)ii{p~k)~m){2q+k)d"k 

(2TTYJ (k2~2pk)(k2+2qk)(k2+\2)l(k-pz)2+X2^ 
(11.16) 

"2 r (Q-k)(i(p-k)-ni)(2q'-k)d*k 

(2TYJ (k2-

-w r ( 
(2TTW (k2-

2pk)(k2-2q'k)(k2+\2)[_(k-pt)2+\22 
(11.17) 

(m—ik)d*k 
(11.18) 

(k2-2pk)(k~p,)2k2 

J2 and Jz contain infrared divergencies and for that 

9 Reference 8, Eq. (8-49). 

10 This notation for the infrared terms, K(pa,pb), is identical 
with that of Tsai in Ref. 4. 

11 Compare Eqs. (11.12) and (11.13) with Eqs. (II.5) and (II.4), 
respectively, of Tsai, Ref. 4, where terms of order m/&f have been 
neglected compared with unity. 

12 Cf., Appendix IS for the derivation of Eq. (11.14) and the 
meson vacuum-polarization term. 



B978 J O S E P H KAHANE 

reason we have included a fictitious photon mass X in 
these integrals. The infrared divergencies can be sepa
rated out; i.e., we can write J\ and 73 each as a sum of 
two terms, one term containing the infrared divergency, 
and the other term free of divergencies. Such a separa
tion is clearly not unique. For definiteness we will 
separate by extracting the infrared term using the tech
nique developed by Yennie, Frautschi, and Suura.13 

Let us consider /3 , Eq. (11.17). When either of the 
four-momenta of the photon propagators approaches 
zero, i.e., k —» 0 or k—pz-^0, we have infrared diverg
ence. Suppose k—>0, then the infrared contribution 
from Jz due to k —» 0, is obtained by neglecting k in the 
numerator and in (k—pi)2. We then obtain 

Me2 Q r {pqf)dAk 

(lirYp^J (k2-2pk)(k2-2q''k)(k2+\2) 

-a Q 

2w pi 

where K(pa,pb) is defined in Eq. (11.10). 
Similarly the infrared contribution from Jz due to 

k—pz~^0 can be obtained by a substitution k—pz—^k 
in Jz, and we have 

J^"=(-a/2rr)(Q/p^K(p',q). 

Thus we have for the extracted infrared term 

J.,X=/3
X'+/3X"= (-a/2T)(Q/pft 

XtK(P,q')+K(p',q)l. (11.19) 

We can then write 
/8=/3X+/3° 

(k2-

-K(p,q'), 

and /3 0 is nondivergent. The matrix element M-t 
from /3X now has the particularly simple form 

M 3*= - (alli<)[K(prf)+K{p',q)\Mx. 

Analogously for J\ we may write 

where 

J^(a/2w)(Q/p3%K(p, 

and /20 is nondivergent. 

-q)+K(P>, - ? ' ) ] 

(11.20) 

, arising 

(11.21) 

(11.22) 

(11.23) 

K(pay —pb) is complex. This added complication in 
M2 arises from the fact that the intermediate state can 
become real; thus we have to cross a pole in the path of 
integration with respect to k, the photon four-momen
tum. The path of integration around the pole is taken 
care of by giving to m, M, and X small negative imaginary 
parts. In our calculation only the real part of K(pa, —pb) 
contributes to the cross section. Hence we write14 

ReZK(p, -q)+K(p', -? ' ) ] 
-Kiprf+KipW+Su, (11.24) 

(which defines 8k) and therefore the matrix element 
arising from 72

x is 

M2^=(a/2w)lK(p,q)+K(p\q/) + 8k-]M1. (11.25) 

Finally, if we let (dcro/d&f)(a/Tr)8j be the contribution 
to the cross section arising from J20, Jz°, and 74, we get 
for the elastic cross section 

•ei da0r a ~1 
- = l+-(51+52+5x) , (IL26) 
%' dS'L T J 

(11.27) 

(11.28) 

d(Tel d(To\ 

d& 
where 

8^K(p,p)+K(q,q)-K(p',q)-K(p,q') 
-K(p,p')-K(q,q')+K(p,q)+K(p',q') 

82—8K~h8j, 

and neglecting m/S; compared with unity 

81=-(13/12)pMp,pf)+2(qqfh(q,qf)-^6/9)^ (11.29) 

8\ contains all the infrared terms and will completely 
cancel when added to the inelastic cross section. 81 is 
the usual radiative corrections due to the vertex and 
vacuum polarization diagrams. By means of Eq. (A48) 
it can be put into the more calculable form 

13 pj 2(JC,+ 1) a'+ic' 
8X = — In—H ln-

46 

a'-K' 9 
(11.30) 

where K ' = £ 8
2 / V , a'=(*<'2+2/c')1/2. 

Finally, it is shown in Appendix C that in terms of the 
Spence function $(#), defined in Eq. (A49), we get 

L \ M
2^32 ) \pq) \ M2 / V M2 / J 

foVH^gQr l n , / ( W ) 2 \ /v?+2(pq')\ 2TT2-| p^-2pq)V A2P$\ /M2-2j>g\ 4TT2-| 

To L2 \ fx2pz2 J \ M2 / 3 J To L2 n \ ^ 2 J \ ^2 J 3 J 

( J ln2/c'ln +Haf-K')-H-(a'+Kf))-ir2 . (11.31) 
To \ a! /L a'+tc' J 

We have used Eq. (A45) for 8K to derive Eq. (11.31). 
13 D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys. (N. Y.) 13, 379 (1961). 
14 Cf., Appendix A, Sec. D, Eqs. (A45) and (A46). 
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FIG. 2. Feynman dia
grams, to order e3, for 
inelastic scattering. 
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III. INELASTIC SCATTERING 

The Feynman diagrams, to order e3, associated with 
inelastic ir~~-e scattering are shown in Fig. 2. The 
matrix element corresponding to these diagrams is 
given by 

m 

in Fig. 3, we choose our coordinate system such that the 
z axis is along q—k and such that the x—z plane contains 
q and k, then we may write d*p'/8' = \\>'\d8'dyd(co§d). 
6 is the angle between p' and q—k. As in the elastic 
case, we now employ the remaining part of the d func
tion to perform the d(cosd) integration. In the lab 
system we have 

dE,/d(cosd)=\^\\q-k\/Ef, 

and, therefore, 

^ i n e l « 3 1 

M--

where 

(2Ty/22(2a>88fEE'y/2 ;fi(p')(/-«)«(p), (III .D i S {2lrym\q\J 2co |q-k 

1 \rp-* P''*r\ \vQkz efeQn 
/>* = \Q—\ + 

(fo-k)nlfi'k p'-ki 2Lp-k p'-kJ 

pA\-q-k q'-kJ \q-k q'-k/ J 
(III.2) 

€ is the polarization four-vector of the emitted photon; 
hence k-e=0. This result, as well as the appearance of 
J-e between the spinors u and u, have been used in 
deriving Eq. (III.2). Note that Eq. (III.2) satisfies the 
condition of gauge invariance, i.e., J-k = 0. 

The scattering cross section for the inelastic processes 
dainei, is given by 

^ i n e l — 

(2TT) 2 E8 
Am*p'&s 

2 [ (^ ) 2 -mV] 1 / 2 • 

XdKp+q-p'-~q'-k)i:Mm, (III.3) 
spins 

where ]Cspms is the summation over electron spins as 
well as photon polarizations. Using expression (III . l) 
for M and employing the usual techniques for spin 
summations, we can write 

ddiriQl-
1 rd*k rd*p' rd*q 

2 - w V ] 1 / 2 J 2co J 8' J EJ 

where 

(2TT)2 i(pqy 

Xb\p+q-p'-~qf~k)A, (III.4) 

A^\Txl(ip~m)Jv{ip'-m)Jv']. (III.5) 

The space part of the 5 function allows us to do the d3q' 
integration in Eq. (III.4). This gives 

^0"inel — -

1 r d*k r d*pf 

- m V ] 1 / 2 J 2co J 8rE' (2TT)2 lipqY-

X«(w+-E , - /oM 4 ' - t -k , 

where<=#+g- -# / andE / =[> 2 +( t - -k ) 2 ] 1 / 2 . I f , a s showi i 

Jo 
MllteV (IIL6) 

A | cosT^oo is meant to represent A of Eq. (III.5) evalu
ated at q= t—k and cos0=c(k), where (k) is gotten 
from the condition co+E'—/0=0, i.e., 

(<§'—m)(E+m)+o)(E+m— 8'— |q|cos#) 
cos#= == c(k). 

|q-k| 
(III.7) 

We have let <£ be the angle between q and k. 
The equality c(k) = cos#, imposes a restriction on the 

region of integration of dzk. That is, only those photons 
of four-momentum k for which | c ( k ) | < l are kine-
matically allowed. Hence the boundary of the integra
tion region as determined by this kinematic restriction 
is gotten by solving [c(k)] 2= 1 or equivalently, 

aook
2-\-2bo)k-}-c—0, 

where 

a=(E+m- 8'-x)2-^2, 

b=(E+m-8/-x)(8/-m)(E+m)+pf2x, 

c= {&- m)2(E+my-p/2q2, 

x= |q[cos$. 

(III.8) 

(III.9) 

So far we have in no way taken account of any limita
tions imposed on k by the experiment. That is, in the 
final-state integration we have allowed all possible 
three-body states limited only by the condition p'-\-qf-\-k 
= constant four-vector. The experiment however, in not 
counting as events those final states which fail, within 

FIG. 3. The coordinate 
geometry for trie in
elastic final-state in
tegration. 

q-k 

file:///vQkz
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FIG. 4. In the £ ' , s' 
plane, the shaded area 
represents those events 
allowed by the experi
mental restriction. We 
approximate this shaded 
area by the parallelo
gram ABDC. 

the accuracy of the detectors, to be "elastic," further 
relates p\ q', and k. The experimental situation is taken 
to be the following: the final energies of both the pion 
and the electron are measured. Only those events for 
which the pion energy is E ' i A E ' and the electron 
energy is (S'zLA^'such t h a t E ' + £ ' = E + m , are counted. 
AEf and A8r are the imprecisions in the measurements 
of these energies. In Fig. 4 we plot Ef versus &''. The 
shaded area corresponds to those events counted by our 
experiment. This relationship between E' and <§', we 
now transform into a restriction on the possible values 
of k. I t is clear that since no angles are measured, the 
experiment in no way restricts the orientation of k. We 
therefore get for the experimental restriction the iso
tropic condition 

w < A £ , (111.10) 

where AE~AE,JrA8f. We shall elaborate upon this 
later. 

Let us now return to finding the solution of Eq. 
(III.8); that is, the boundary of the kinematically 
allowed region. I t is clear that when E~-x^>my then 
b2^>ac and 

-c 2mE{E~8l)~ix28' 

~2b 2(E-8')(E-\q\cos<t>) 
( I I I . l l ) 

We have approximated b and c of Eq. (III.9) by their 
leading terms, assuming E—x^>m. Equation ( I I I . l l ) is 
the equation of an ellipse and except for the region 
cos<£~l it gives to a high degree of accuracy the 
boundary for the kinematically restricted region. For 
E—x~?n, Eq. ( I I I . l l ) is no longer a good approximation 
for the solution of Eq. (III.8). To obtain the kinemati
cally restricted region for cos<£«lwe need to solve the 
quadratic exactly. Fortunately we can avoid this chore 
by considering the experimental restriction oo<AE. 
Since we are interested in the allowed region of k, i.e., 
the intersection of the kinematically restricted and 
experimentally restricted region, then, as shown in Fig. 5 
whenever AE<uk we need not specifically know uk. 
Therefore, in order that the approximate form of ook 

( I I I . l l ) be sufficient, we want the condition E—x^>m 
should still obtain at AE=o)k, i.e., 

A £ « -
2mE(E-8')-v28t 

2m(E- &) 
(111.12) 

We rewrite this as15 

AE«Z(^+2mE)/2m(E- S')JSmJ- S'), 

where 8m^r^2mE2/{ix2+2mE) is the maximum possible 
value of 8f. This says that if we get too near maximum 
momentum transfer, the phase space available to the 
emitted photon becomes more inhibitive than the experi
mental restriction. In such an event the experiment in 
no way discriminates between elastic and inelastic 
processes. 

Actually since the main contribution to the final-state 
integration comes from small values of co, our results 
aren't too sensitive to errors in the shape of cok for 
E—x^m. Hence, the range of validity of our results 
will be wider than what is implied by Eq. (III . 12). We 
therefore take as the integration region for d3k the 
shaded area of Fig. 5. 

Let o) be the distance from the focus to the vertex of 
the ellipse given by Eq. ( I I I . l l ) , i.e., 

2mE{E-8')~y28' 

2(E-8')(E-\q\) \6mE{E-8f) 
(111.13) 

We shall call those photons with energy cx)<o~> "soft 
photons" and those with w>co "hard photons." Then 
d<Tinei~d<7s-{-dah, where dvs is the cross section arising 
from the emission of soft photons and dah from hard 
photons. By Eq. (III.6) we may write 

d<Th 1 

d& 27r2w|q| 

X 

codec 

dy 

*_lql [q2+co2-2coE+2coy]1 /270 

Ad<p, (111.14) 

where 

2/ = -
2mE{E-8')~lx

28' 

2co(£- 8f) 

To 2Eu 

Smoj(E~ 8') 
(111.15) 

In deriving this result we have first written dsk 
— 2wo)2dcod(cos(t)) and then let y = E— |q |cos$. Strictly 
speaking, Eq. (III.14) is not quite correct. I t weights 
photons of different energies equally. However, photons 
with energy oo>AEr—A8f should be weighted less than 
photons with energy oo<AEf~A8r. Specifically, one 

FIG. 5. The phase space 
available to the emitted photon 
is represented by the shaded 
area. The cross-hatched area 
represents the soft photon 
region. 

15 Actually, if we solve Eq. (III.8) for <f> = 0, we get cok = Smax'— 8'. 
Hence, when AE = &ma^

f—&, the kinematically restricted region is 
wholly contained in the experimentally restricted region. 
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should include in the above integral the weight function 
g(<a) given by 

g(«)=l for w<co<A£'-A£' 

AE'+AS'-co 
= for AE'-SA'<co<AE'+A<S'. 

2A<S' 
This can be seen from the following argument: All the 
events corresponding to the points in the shaded area of 
Fig. 4 have an equal likelihood of occurring. Let p be 
any point in this area and let d be its distance to the 
line E'+S' = E+in. Then if up is the energy of the 
photon produced in the event corresponding to p, we 
must have cop=VZd.. That is, all photons of energy cop 

must come from an event represented by one of the 
points on the line segment parallel to the line Ef+ & 
~E+my passing through p and contained within the 
shaded area. Hence, the probability of having cop is 
proportional to the length of this line segment. Thus, 
g(ca) above. 

However, since the main contribution to the integral 
comes from small co, and if we assume A §'<&&£', we can 
safely approximate the effect of g(co) by taking AE= AE'. 
That is, replacing the shaded area of Fig. 4 by the 
parallelogram ABDC. 

As we have already indicated, the error introduced by 
relaxing condition (III. 12) is negligible. Hence one can 
expect (III. 14) to apply even when AE> ^ m a x ' - &. 
However, in such an event we first need modify (III. 14) 
by replacing AE by ^raax - ^ , as can be seen from 
footnote 15. 

A. Soft Photons 

The region of k integration for soft photons is depicted 
by the cross-hatched area in Fig. 5. It is the largest 

possible isotropic region. Since w (III.13) is smaller than 
tn/2 we can neglect k in the 5 function of Eq. (III.4), 
and rewrite Eq. (III.2) as 

• / ' € „ = — • 

Qrp-e p'-e q-e q 

pz2Lp-k p'-k q-k q' -1-
•'•*J 

Then if we compare Eq. (III.4) with Eq. (II.8) it can 
be seen that 

dcrs~(alTr)d(rods, (111.16) 

where 

1 
«.= — 

k2dk 
dQ} + 4Wo [&2+A2]1/2./ lp-k pf-k q-k q'-kJ 

In order to avoid the infrared divergence which occurs 
in the soft photon cross section, we have assumed a 
small photon mass X. We can write 8S as 

5S= ~5X+ E eahI(pa,pb), (111.17) 
a<b 

where we have anticipated the form of the infrared 
terms by explicitly separating 8\ given in Eq. (11.27). 
€aa= 1 and for a9^b, eab— ± 2 according as pa and pi, are 
alike or unalike with respect to the attribute of being an 
incoming or outgoing momentum. I(pa,pb) is now diver-
gentless and is given by 

I(pa,pb) 
1 r°> 

4?r JO 

kHk (papb)<Klk 

[>2 + \ 2 ] 1 / 2 J (Pak)(pbk) 
'%K(pa,pb). 

The details for the evaluation of this integral are given 
in Appendix D. The results are as follows: 

/(£,£) = l+ln(m/2«), 

J ( M ) = ln(E/«), 

/(# ,,# ,) = ln(« ,/«), 

Iiq'^lnliE-&>)/«-], 

/(£,#') = ln(S'/o>) ln (2S7w)- i \&(ml2S'), 

E 2E m / M2 \ 
/(#,?) = In - In i l n ^ — + i $ ( l ) - J $ ( 1 , 

w /x 2E \ 2mEl 

I(prf) = h* 
E- &' 2{E- &') m 

-ln- -iln2-
2{E-&) 

+**(!)• 
\ 2m(E~&)J 

(111.18) 

(111.19) 

(111.20) 

(111.21) 

(111.22) 

(111.23) 

(111.24) 
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E 2E / &' \ E-S' E-2S' fE- &'\ 
/ ( ^ ' ) = In - In 1*( m<3>(l)+! In In Jln'f ) 

w n \E-S'J &' &' \ & I 

/Sm2E(E-28')\ i\mv?(E-2&')\ i2mE\ / T0 \ 

-H—-—+H H l n ( — W )> (ni.26) 
\ To I \ To J \ M2 / \4m8'(2mE-^)J 

K'+II /E-S\ / a ' + A / E \ /E+S'n\ / a ' + A 

/ E \ /S'(l+ri)\ / nS' \ / ( l + r , ) 5 \ / f l « ' N / ( l+ f i )« ' \ l 

where r1=(a,—Kf)/2K/. It has consistently been our / 1 \ 2 m2 

policy to reduce the arguments of all Spence functions ^4p'2(2) = ( — J -——[—T0+4:pk(2pq—/*2)], (111.36) 
n/~w +• V» r» +• 4-J-»Q-i"f» n K o r v l n +-£} T T O M I O K Q l o c o - fVir i t - * l i n i t i r 

where r1=(a'—Kf)/2K/. It has consistently been our / 1 \ 2 m2 

policy to reduce the arguments of all Spence functions ^P'2 \ ~ ) ,h\2 

so that their absolute value be less than unity. Equa- ^3 ^ ' 
tions (A52)-(A55) have been used to accomplish this. / 1 \ 2 2 

A ,<2> 
- ( = ) <?32/ (pk)(p'k) 

B. Hard Photons 
TD r ^ * <-u • < - < - • < X [ ( ^ / ) [ - r 0 + 2 ^ ( ^ 2 + 4 ^ - 2 ^ ) l 
Before we can proceed to perform the integrations of * r r ? * / _ j 

Eq. (III. 14) for the hard photon cross section we must — 4m2(qk)22 > (111.37) 
first do the trace calculation of Eq. (III.5) for A. This ( 1 \ a 2 

— ) ZTo+2p8
2(pq)+6m2(2pq—/jL2) 

Qz2) pk 

3 - 4qk (pz2+2m2+ 2pq- qk) 

where / 1 \ 2 2 

?32/ pk 

- 2p'k(„2- 2pq+2qkft, (IH.38) 

^ i a , ._,_LV_^_ WJ p'-k 
lQ 

W / 

/ 1 \ 2 2 
^ ( 2 ) = ( - ) — 

\<73
2/ *>'• 

^ 2 ' (rW X[-To-psi(p3i+6pq)+6m*(^-2pq) 

Xl-To+4pk(pf+4:pq-2pk)l, (111.29) + 2pk(2ps
2-,x2+6pq-2pk-4qk) 

At,.mJ±) - ^ - [ - r „ ] , (111.30) + 2 5 ^ ( 3 ^ + 4 ^ - 2 ^ + 2 ^ ) ] , (111.39) 
,piV (q'k)2~ '" ' ' 41(

2> = (l/?3
2)2 

4 >y_( 1 V ^ 2 + V X8[-^2-4^+2^-^+3g/fe], (111.40) 

xcro-2M(^+4^)]J (111.31) ^ 9 < 3 ) = ^ ^ ^ [ r ° - 2 ^ ^ 2 - 2 ^ ^ ^ 4 1> 

^ " - Q ' ^ O " - ^ ^ . Cm^ ^ < - ^ ^ [ r o - 2 ^ - , 2 ) ] , (ni.42) 

1 \ 2 2 •- 1 (2pq+ptf 
At.™ = (—) [ - M ^ + 2 ^ + 2 M 2 ) ] , (HI.33) ^ <» = 

A1^ = (l/pmW-2m^, (IIL34) x [ - r „ + 2 g ^ ( ^ 2 + M
2 + 2 ^ ) ] , (111.43) 

/ 1 \ 2 m2 

4,»<» = ( — ) [ - r 0 + 4 g ^ ( ^ 3
2 + 4 ^ - 2 ^ ) i . ( » = . 

W / (M)2 , 

1 (2pq+ps*-2pk) 

<qzV (pk)2 tfpf (p'kXqk) 

+4p'k(v.2-2pq+2qk)~], (111.35) X{To+2pk(pi
2+6pq-tx

2-2pk)'], (111.44) 
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1 (—2) I t then follows from comparing Eq. (III . 14) with 
A^=-——-lT0+(*pq+SKipq+PV Eq. (II.9) that 

3 

-4pk(ps
2+n2+6pq-2pk) 8 » = E E ^ ( i ) at{\,p,p',q,q'¥, (HI.51) 

+2p'k{<lpq-2pk-n2)l, (111.45) where 

Aa>W = -
1 2 ( ^ 2 ) 2 ,AS ,fl ^ ,.2* 

qW(qk) 4«TJ-„ ;£_lql | q - k | A 
X(/>32+2£g)+2^2] , (111.46) T h e s e i n t e g r a t i o n s a r e extremely complicated and re-

1 (—2) quire much care. They are evaluated in Appendix E 
A j , ( 3 ) = where the results are accurate only up to terms of order 

qi^pz2 (pk) unity. If we write 

X[> 3 V+2m 2 )+2MM 2 +2^+4w 2 ) <Z<rinei=(aA)rf<roSinei, (111.52) 

+2^(^ 3
2 -4w 2 )+4^( /> 9 +m 2 ) ] , (111.47) then from Eqs. (111.51) and (111.17) 

A,™-—— LpW+^Pq+2^) + BmKpq) 5iMl+5X= £ J M 

?»**»*(*'*) + L / ( ^ ) = 5 i n e , ' , (111.53) 
-2pk(3p3*+6pq+2m*-4pk) ^ ^ 

4 ' ' J(pa,pb)=T. $VaVbH)JreabI(pa,pb), 

Alw= |> 3
2 +8^+4m 2 i= I (IH.54) 

q*2pz2 3 v 

-6pk-2qk+2p'k2, (111.49) A * . ) = E * i r ( 0 -'Pa 
t = l 

W A?ir f thfsof t photon case we now write ^ i s ' w e j 1 ^ c o m b i n e d corresponding terms in the 
hard and soft photon cross sections. We now list these 

dah=(a/ir)dcoSh. (111.50) combined terms: 

J(p,p) = Mm/2") > (111.55) 

J(q,q)=ln(E/AE), (111.56) 

J(p',p') = \n(S'/AE), (111.57) 

J(q',q>) = \n£(E-6')/AEl, (111.58) 

AE 2& (2$'\ /AE\ / - A £ \ r(pz2)2 1 
J{p,p') = 2\n— I n — + i l n 2 ( — ) - | l n 2 ( — )4-i21nf-$ )+ 1 \h 

&' m \mJ \ w / \ $' J L T0 J 

r(*32)2 1 4m2E(E-3S') m2E2 rT0-4m2E(E-S') [\m2E2 \ i AE 
- + i \h h h+\ — + ( 1 I lnp In— , 
L. T0 J 3T0 T0 L 4miu

2<S, \ Ta / J w 
(111.59) 

E 2E /2E\ AE / pz2(,x2+2mE)\ AE 
J(p,q)=2In— In 1 ln2( — )+§ I n 2 — + $ ( l ) + ( 1+ ) lnp In <J>[1- (M

2/2m£)], (111.60) 
AE ju \m / & \ To J w 

/ AE \ (2{E-8')\ /2(E-8')\ 

AE r 2w£(^3
2+M2-2mE)l AE / M2 \ 

-Jin2 1+ lnp In * (1 )+* 1 — ) , (111.61) 
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AE 2{E- &') 
J(p',q) - 2 In In +2| 

p32(fx2+6mE)- IE fg' IE /&\ /E\ /E\ /E~g'\ 

+* 
T0 

\Amtx\E- & 
- ) - # ( W i n -
•')/ W ( £ - S'Y 

2m(E- 8') ( 2m(E- <§') V 
In 

§' IE 
J(p',q') = 2 In— In 2: 

A£ M i 

r ^V+2mE)-
1+ 

To 

2£ 
lnfln h*(l) 

\<S'2[>2--2m(£-<S')]: -5 ')?/ 
(111.62) 

\E-S'J 

E-8' E-8' E-28' 
2 _ j - l n l n 

8' 8' 

(\mv
2{E-28')\ /&m2E(E-2S')\ (2mE 

- (« '+ ! ) [ lE-8\ /a'+K\ fE+8'n\ / a '+ /c ' \ / E \ / £ ' ( l + f l ) \ 

To / \ M2 / \imS'(2mE-n2) 

[ A E - 6 \ /a'+K'\ /E+8'n\ fa'+K\ ( E \ / 
J ( M ' ) = — 21n( )ln Win )ln( Win ) In — -J 

a! 1 \ AE J \a'~K'/ \E-8'J W-K'J \E-8'J \ E-8' I 

E I n& \ ( (l+ri)S\ { nS' \ 

£-<§ ' \ E-8'J \ E ) \E+8'rJ 

(111.63) 

/(l+n)5' 

\E+8'rJ \E+& 
A £ \ 

I n — ) 
•mE(E-8') ,_ X 2 ^ 2 ( M 2 + W £ ) + 2 W £ ( 2 O T £ - M 2 ) ' 

/(#') = 

co /L n28' 

-p3
2(n2+2mE+2mS') r(p3

2)2 

To 
- / i + 

(lnP)[-

H 

To 

4m2ESf 

(111.64) 

(111.65) 

w2E2 kmEpz 
+ J4-

/ - A A \ - | (pzTAE 
RM+&1 (R-l-lnt;), 

\ & / J TQ g' 

(111.66) 
To To 

£=g'/(g'+AE), R^2\n(2g//m)-HAE/^--\n^p==^gf/2mE(E~gfl 

/ i = ( l - * ) ( * + 2 ) + £ l n $ , / 3 = ( l - r ) ( ^ + f ) + ? 3 l n 5 + ( l ~ f ) + | ( l - ^ ) ? 

/ 2 = ( l - P ) ( i ? + l ) + f 2 l n £ + l - { , / 4 = ( l ~ ? 4 ) ( ^ + | ) + ? 4 l n ^ + ( l - ^ ) + K l - f 2 ) + K l - ^ ) 7 

and all other quantities have already been defined. Finally, upon performing the required summation in Eq. 

(111.53), we get 

25 ' AE & 2& (mE\ (E~g;)g' 
«inei7 = i In2 1 I n 2 - ; — 2 I n — I n — + l n ( 7 7 - 3 J+ln-

m AE m \2uAEj 

t\PJr- , R 

1+2 In' 
(AE)2 L \ £ - 57 J 

i t ' + l E(E-8') a'+K' 
- ln ln 

(A£)2 a ' - ic ' 

-In! 
/ E \ r 2<S' 2£-i AE 
( ) l n 2 1 n — ~ C l + * l n p ] l n — + R \ n t 
\E— <§7L m ix J « 

p3
2()j,2+2mEy Am2E2 

\Il~ ill ^3 
3r0 

\UME r 2E 
+ _£ W 

+ln-

To 

2m(E- 8') 

{IW--R]-
(pWAE E-8' E-28' 2m(E-8') 

— (R-l-ln£)+ln ln § In2 

r„ «' 8' E-8' M 

In 
2m(E-8')\ 2mE r ( £ - <S')_1^o' 

+ln- -ln- 41n2-

-4w(2mE-M2)J 

r i « ' \ / ( l + r i ) « ' 

l n _ i n 

+ 1r 
— 1: 
a' L E 

/ 2m(E-8')\ ZmE r 
h W i n — ln -

M' V M2 / M2 L^ 
£ S'( l+n) £ / rx6" \ / ( l + n ) « ' \ / r ^ ' \ / ( i+ f l )g 'v-

- - + $ 1 ) _ $ 1 \ + $ ( . ) _ $ ( . \ 
E-8' \ E-8'J \ E l \E+S'nJ \E+8'rJ. 

2 ^ / Tu \ / To 

£ - «§' £ - 5 ' 

+$(!—-—\~J\——W(—-—V*(—-—'V*f—^ 
\ 2m(E-S')J \ 2mEI \4maHE-8')J \8mHE-S')2/ \E/ <4wM

2(E- S')J \ 8 w 2 ( £ - C?')2 

Y 4 W M 2 ( £ - 2 < § ' ) \ / 8 m 2 £ ( £ - 2 c § ' ) \ r 4wE^ s
2-/ 6" \ /4mfi2{E-28')\ f'6miE{,E-28')\ r 4wE* s
2 l / A£ :*( — )'+*( ~ )-*( 1 - 1+ — *( 

\ E - S 7 \ To / V r0 / L j. r o ^ J \ & 

A £ \ | 
J ) . (HI.67) 

file:///Amtx/E-
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file:///e-S7
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The latter group of terms bracketed by { } are all of 
order unity. Moreover, their sum is also of order unity 
and can safely be neglected. To be on the safe side we 
shall keep them and in column 2 of Table I we list some 
values of { }. 

IV. RESULTS 

The observable scattering cross section da is given by 
da~dae\-\-dainei. From Eqs. (11.26) and (111.52) we 
therefore get 

da da of 
— = — ( 1 + - 8 ) , (IV.l) 
dS' dS'\ T / 

where 5=5i+52+5inei'. [(a/V)5 is called the radiative 
correction] and 8h 82, Sine/ are given in Eqs. (11.30), 
(11.31), and (111.67), respectively. 

It can be seen from Eq. (III.67) that 8 contains a 
term / i=J ln2(2<§'/m). As we have already indicated in 
the introduction, this worrisome term should always be 
grouped with the second term of Eq. (111.29), viz., 
h=— Jrn2(A£/o>). By this we mean the following: In 
attempting to trace the origin of fa we find that it comes 
from J(p,p') [Eq. (111.59)]. We further notice that 
J(p,q) and J(ptf) [Eqs. (111.60) and (111.61)] also con
tain terms like fa, but in summing, these terms have 
cancelled. Moreover, all three equations contain fa, and 
we see that terms like fa always appear together with 
fa. To understand this better, consider the y itegrations 
of cases 2(c), 3(a), and 3(c) of Appendix E. A moment's 
thought shows that the fa terms come directly from using 
y for the upper limit of these integrations. Had we used 
IE instead of y, i.e., done an isotropic integration thereby 
ignoring the kinematic restriction, the fa term would be 

absent. Hence, terms like fa can be viewed as arising 
from estimating the allowed photon region by the iso
tropic, experimentally restricted region, and fa as the 
correction to this overestimate when the kinematic con
ditions are taken into account. 

Summarizing, we can say that the fa term alone would 
be present in a radiative correction, not so much because 
of the improper handling of the experimental conditions, 
but rather because of the inaccurate accounting of the 
kinematic conditions, whenever such a distinction is 
possible. 

We have used the technique of infrared extraction 
developed by Yennie et al.n in evaluating the two-
photon exchange diagrams. It is generally assumed that 
after having made this extraction, what remains (8j) 
contributes negligibly to 8. It is also generally assumed 
that 8K defined by Eq. (11.24) is likewise of order unity. 
We have evaluated both 8j, Eq. (Cll) and 8K, Eq. 
(A45), and have found them to be substantially larger 
than unity. However, 82=8J+8K is of order unity. 

In Table I we give some numerical results for the case 
£=20 BeV, AE= (E- (§0/20. 

The radiative corrections (a/ir)£, for w+-e scattering 
can easily be derived from our present results. By count
ing the number of single-meson corners per Feynman 
diagram in Fig. 1 we see that only the sign of the con
tribution from the two-photon exchange diagrams [(2), 
(3), and (4)] gets changed. Similar considerations show 
that for the inelastic case only the signs of the cross 
terms get changed. Hence, we can write 

0=8i—82+8 inel 
where 

(IV.2) 

2& AE & 2& mE (E-S')S' 
-\ In2- 2 In—- In hln hm Oinel — 2 i n 

K'+1 E(E-&) a'+Kf 

(AE)2 

AE 
-ln- i n n £ - [ l + i m P ] l n ( 

(AE)2 a'-K1 « \ 
• ln -

E n E r 2& 2E~] 
1-2 In +ln In 2 In— 

E- & J E- S'L m n J 

pz2(ii2-\-2mE)\ Am2E2 

1- -Vi-i/2-

\^pz2mE r 2E n (p*2)2 AE E - , 
lnfl 2 In R (i?-~-l-ln£)+ln 

I To L M J To & & 

E-&' E-2%' 
-In -im2-

3T0 

2m(E- &) 

2m(E-&) r 2m(E-$') 
+ln ln| 1 {• 

E S'(l+ri) E 

E- & M* 

K'+lr E+S'n a'+Kf 
2mE f To \ K'+lr E+8'ri a'+n' 

+ln lnf )H In In 
M2 \^m(2mE~ix2)(E-&)J a' L E a'-Kf 

+ln In § In2 h$( 1 ) - $ [ 1 }+<&>( ) - $ ( J 
E-S' E-& E-&f \ E-S'J \ E ) XE+S'rJ \E+6'n/J 

+Jl 1 ^_s(i_JL_V$( _!! \-J ° ^ + $ 0 _ $ ( ) 
\ 2m(E~8')J \ 2mEJ \4mu2(E- 6')/ \StnHE--S')2/ \E/ Y E - £ 7 

+$( 
/ 4 W M 2 ( £ ~ 2 S') \ (%m2E(E~ 2 &) 

To 

\ /Sm2E(E~2S,)\ r 4W£/>3
21 / A£\ 1 

H—-17—H I-ITK-T)I- <IV-3) 

file:///StnHE--
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TABLE I. Some numerical results for £ = 20 BeV and AE= ( £ - 8 0 / 2 0 . 

1 
8'(104MeV) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

2 
{ ) a 

0.477 
-0.075 
-0.383 
-0.614 
-0.816 
-1.009 
-1.195 
-1.419 
-1.732 

3 
8 i b 

14.847 
16.383 
17.295 
17.951 
18.467 
18.894 
19.260 
19.581 
19.867 

4 
S2

b 

-2.110 
-2.787 
-3.229 
-3.547 
-3.783 
-3.959 
-4.085 
-4.157 
-4.193 

5 
5inel ,b 

-10.617 
-16.291 
-21.046 
-25.253 
-29.303 
-33.439 
-37.971 
-43.557 
-52.309 

6 
(«A)5(%)C 

0.49 
-0 .63 
-1 .62 
-2 .52 
-3 .39 
-4 .29 
-5 .29 
-6 .53 
-8.52 

7 
5inel /d 

-8.470 
-15.642 
-21.560 
-27.086 
-32.561 
-38.250 
-44.491 
-51.921 
-62.478 

8 

(«/*)*(%)• 
1.97 
0.82 

-0 .24 
-1 .30 
-2 .39 
-3 .58 
-4 .91 
-6 .55 
-8.92 

a In this column we have listed the bracketed t e rms of E q . ( I I I .67) . 
b di, 52 and Sinei' (columns 3 , 4, 5) are given by Eqs . (11.30), (11.31), and (111.67), respectively. 
c ((X/TT)8 — (a/IT) (5I+52+5inei0 is the radia t ive correction for ir~-e scat ter ing. 
d 5inei' is given by Eq . (IV.3). 
e (a/ir)8 = (a/ir) (5i —52+5inei') is the radia t ive correction for -n+-e scat ter ing. 

We have listed some numerical results for 5inei' and t 
in the last two columns of Table I.16 

ACKNOWLEDGMENTS 

The author would like to express his sincere thanks 
to Professor G. C. Wick for suggesting this research, for 
continuing help and encouragement while the work was 
n progress, and for assistance in preparing this paper. 

APPENDIX A: INTEGRATIONS 

In this section we outline the techniques for perform
ing the integrations occurring in the elastic cross section. 
The methods employed are essentially the same as those 
used by Brown and Feynman.17 Those integrals which 
suffer an ultraviolet divergence are handled by append
ing to the integrand the regulator A2/(&2+A2) which is 
ultimately to be considered in the limit of A —> GO . And, 
as has already been indicated, a small fictitious mass X 
is assigned to the photon in order to take care of the 
infrared divergence. We ultimately take the limit X —» 0. 

All the integrals in this section have denominators 
which are a product of various factors of the form 
(k2—2pa'k-\rAa). We can combine such factors by 
making use of the relations18 

--f 
AB A 

A2B Jo | 

dy 

o lAy+B(l-y)J 

2ydy 

LAy+B(l-y)l* 

1 f1 3y2dy 

A*B Jo [Ay+B(l-y)y> 

(Al) 

(A2) 

(A3) 

In this manner we can reduce all the integrals in this 

16 P. B. Allen and M. M. Sternheim, Brookhaven Internal 
Report, BNL 7588, 1963 (unpublished), have checked numerically 
the accuracy of some of the approximations employed in 
Appendix E. 

17 L. M. Brown and R. P. Feynman, Phys. Rev. 85, 231 (1952). 
18 R. P. Feynman, Phys. Rev. 76, 769 (1949). 

section to a form where the dAk part of the integration 
is simply given by one of the following: 

Si r 

~2*)2J I 

d*k(l-9k,) (l;p,) 

(2TT)27 [k2-2pk+Aj p2-A 

24i r d^kiUkvihhf) 

(A4) 

24i r , 

ITTYJ I 

(A5) 

(2TTYJ [k2-2pk+Ay 

_-(Upv) LpvPv-g^P2-A)/2]) 

(p2-A)2 

A. Two-Denominator Integrals 

The following is a complete list of the two-denomina
tor integrals arising in our calculation: 

-(0;*0 00 = / -
(2TT)2 J 

(Ukv)d"k 

£(0; , ) ( W ) = 

(2TT)2J (k2-2qk)(k2-2q'k) 

i r (l;kv)d*k 

(2TT)2J (k2-2pk)(k2-2p'k)' 

p'=-

(2TT)2./ k2(k2-2pk) 

i r d*k 

(2TT)27 {k-psYW-lpk) 

R-- — [ 
(2x)2 J 
(2*)* J k*(k-pt)* 

The method for evaluating these integrals is not very 
different than the method described in Ref. 17, Ap
pendix Y(a). We therefore simply state the results. 

io(M) = }[ln(mVA2) - 1+Up+P'mp,p')l, (A6) 

Lo« = i[ln(MyA2)-l+i<2M<7,g')], (A7) 
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L,<«> = j(f+f),l>(f»yA*)-$ 
+Up+p')Up,P')l, (A8) 

^ w = tG,Dn0iVA*)-l+4GV(?,«')], (A9) 
P=-P'=i[ln(w2/A2) - 1 ] , (A10) 

U = i [ > ( # . V A , ) - l ] . (All) 

B. Three-Denominator Integrals 

We shall need to know the following three-denomina
tor integrals: 

i r (pzk)d% 
p/Spw=— / . £ _ , 

(2x)27 {tf-2qky{W-2q'k) 

i f (PskWk 

/>32G0
(m) = — ln2/cln h*(a-«) 

4aL a+K 

-*( - O - K ) — 7 T 2 , (A20) 

pi>G,M--
K ' + 2 

C9/(/>32Go(">+|ln2K') 

—r 
(2TT)2 J 

^ ( 0 ; , ) ( " , = 

(2ir)2J {W—lpl)\W—lp'k) 

# (0;»';J'<T) 
( m ) : 

(27T)2./ (k2-2qk)(k2-2q'k)(k2+\2) 

% c (l;kv;kvk<r)dAk 

r(0;v) (/*) = 

(2TT)2J (k2-2pk)(k2-2p'k)(k2+\2) 

i r (l;k,)d*k 

+^(2M2^o (^-i ln2/c /)] , (A21) 

?32ft^) = — [ ^ ( ^ 2 G o w + i ln2jc) 

K+2 

+pZv(2m2G^-\ 1H2K)] , (A22) 

where <£ is the Spence function denned in Eq. (A49). 
C. Four-Denominator Integrals 

The only four-denominator integrals appearing in our 
calculation are 

^ J. y tip j KfpKrfijlM fC 

— I-
(2irYJ , 
(21r)2i ki(k-piy(k*-2q'-k) 

(2VyJ (**-

- — f 
™"~ (2,)» J 

(2T)2 J (ki-2pk)(ki-2q'-k)ki(k-piy 

r(0;i0 
(2!T)27 , 

(2TT)2./ (.ki-2pk)(k2+2qk)P(k-p3)
2 

(2wyj k2(k-piy(k2-2pk) 

Again we simply list the results. 

^^«=i[iG2
Mfe?')-2], 

2r0<"> = ir(g,?')/8(g.«'), 

K0™ = K(p,p>)/8(p -p'), 

K/^=UP+P')AP,P'), 

lrpsypser (p+p')2 

We shall leave the evaluation of the scalar functions, 
7o and to, for later and consider first the tensor functions. 
We shall show that it is possible, by means of an alge
braic technique given in Ref. 17, to reduce them to a 

(A12) combination of integrals of a lower tensor order. Let 

(A13) 

(A14) 

(A15) 

(A16) 

(A17) 

£<« = £ , p™ = q', p™ = pz. 

Then we write 

(A23) 

K ( m ) : 
^rpZypZcV 

8 L j?3
2 L Pz2 L 4 J 

(P+p'Up+P')« 
v(p,pf) 

r w 2 -|-i 

+few[ln—-t+i(#+#/)2M^,)JJ , (A18) 

where the at- are scalar functions of the p(i) and are to 
be determined. That this expansion is correct follows 
from the following argument: The p{i) span is a three-
dimensional subspace. Let P be a vector in the direction 
perpendicular to this subspace. Then to evaluate the 
P component of Iv we must restrict the region of inte
gration to k along P. The integrand then becomes an 
odd function of k and must vanish upon being integrated. 

Define 

Kf r Q!-K' 

4a'L a'+K' 

- l f 
0;j,) — i 

( 2 T T ) 2 J 

(1; k,)d*k 

+^(af-K,)-H-(af+K,))-Tr2 , (A19) H 
• ] • 

(2x)2j (ki-2pk)(k*-2q'-k)(k-p3)
i 

(1; ife,)^ 
- * /" — 

(2x)27 (£2-(2x)2J (k2-2pk)(k2-2q'-k)k2 

(A24) 

(A25) 
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Then it is evident that 

f, = P^Iv=KFo~Ho+Pz2Io), 

where G0
(M) and Goim) are three-denominator integrals, 

J O S E P H KAHANE 

already defined. It then follows from Eq. (A23) that 

tti-EAtf-1/;, (A26) 

where 
A t f =(#^( / ) ) = 

r—w2 ^ |^32i 

U#82 | ^3 2 P*2) 

and A"1 is denned by the condition that A~1A= 1. It can be shown that 

' ( 2 M 2 + ^ 3 2 ) (2(pq')-W) ~ ( M 2 + ^ 0 

(2(pqf)-W) (2m2+^s2) ~ ( w 2 + ^ ) 

. ~(»2+Pq') -{m2+pq') (2/pi)[_(pqy-mV~]) 

A~1^-
- 1 

D 

where 

D = 2 [ m V ~ (^0 2 ]+^3 2 (m 2 +M 2 +2^ / ) . (A27) 

Then Eq. (A26) for i= 1, 2 gives 

«i= (l/2Z))[(M
2+^0(^32/o~2Fo) 

+ (2M
2+^32)^o (^ )+(2^ ,-^32)Go (- )] ) (A28) 

a2= (l/2D)l(m*+p<t)fa*h--2H*) 
+ (2m2+^32)Co ( w )+(2^ ,-^32)^o (^ )] . (A29) 

We have not listed a% because it isn't needed in the 
calculation. We have made use of the result that 

e is to be obtained from the condition / / = F , which gives 

e ^ - Z f e . (A34) 
k 

The integral 7o contains an infrared divergence. Jo, 
however, appears in our calculation only in the combina
tion p32I0—2Ho which is divergentless. By Eq. (A30) 
we write 

i r d*k(2pdk-2k2) 
p^h-2H0--

Fo=H0 (A30) 

(2TT)2 J (k2-2pk)(k*-2q'k)k2(k-pz)
2 

It is this integral we now propose to evaluate. Using 
Eqs. (A1)-(A3), (A5) we get 

To see this, first let k -> k+pz in F0 [Eq. (A24)]; this 
shows that F0 is the same scalar function of pr and q as 
Ho is of p and q'. However, p2, pqf, and qf2 are the only 
scalars we can form from p and q' and these are invarient 
to the substitution p —» p', q' —> q. Q. E. D. 

Let us now apply the same procedure to IVfl. We 
may write 

I^aijp^W^ + tgv > (A31) 

where a# and e are scalar functions of the p{i). Let 

f,™ = p*I„=h(F,-G,M), 

fvw = pfIffV=±(Fv-Hv+pz
2Iv). 

We now further expand 

f^^PupS'1, (A32) 

where we suppose the /?# to be given and we wish to 
solve for a# and e. Multiplying Eq. (A31) by pv

{h)p^m) 

and contracting on p and /u we get 

pz
2h-2Ho= 

2 Jo Jo 
xdxdy 

x / : 

Jo 

lz(zpx
2-2Ax+pzpx)dz 

(zpx
2-Ax)

2 

where px
z=ocpy

Jr(\ — x)pz, Ax—pz
2(\ — x), and 

We do the 2 integration as follows: 
1z(zpx

2-2Ax+pzpx)dz 

(A35) 

/ (s^2-A*)2 

r1 zdz rl 

= / +{p2px-~Ax)\ -
Jo zpx

2—Ax Jo 

zdz 

which gives 
anAkiAmj-\* eAkm** PmlAkl 1 

£ Ajk-'lJki-edki']. 
k=l 

zpx
2-Ax Jo (zpx

2-Ax)
2 

1 /Px2-p3px\ pZpx (AX~P2\ 

pAp*2-Ax) (px
2)2\ Az / ' 

2p2x-~pi \ 

(A33) 

2^2*V„V+/>3
!'(1-*)/ 

^ « ( 2 - » ) l n C - ^ V / ^ ( l - a ; ) i 

2 0 . V + M 1 - * ) ] * 
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In the last step we have used the relations 

prpx^\pz\2-x), 

prpv^hpz2-

We can therefore write 
1 r1 

pz
2h-2H^-~ dy(I+U) 

pil0-211 

where 
±dja L( 

d2csch201 
•\d$, (A38) 

a=coth~ 

^^coth"1 

where 

I 

UJa L{p-q')2pz
2A 

w 4W) 1. 
J LW2(M2+2W)J 

1 {2p*x-pj)dx 1 

^ V o #»V+#,*(1-*) £„2 n Pv2Jo PyW 

^ 0 

.w2(M
2+2^0-

We do the 0 integration by letting t=e~~2d, i.e.. 

In (csch0)W = - 2 / In (sinh0)tf0 
£3

2*(2-x) l n [ - ^ V / # 8 2 ( l - * ) ] 

[ ^ ¥ + ^ ( l - x ) ] 2 -J# 

1 r00 <ftln* 

Pv2Jo (1-02 

'<& 
- [ ln( l - / ) - ln2-J ln/ ] , 

and there results 

l r In 11 we have made the change ol variable to l r / — 4<r \ 
t= -py

2x2/pz
2(l-x). The last step is gotten by letting pNo-2H0=—\ (b-a) lnf — ^ J 

* -> 1 A, then II -> - I I and must therefore be zero. In 4dL \(p-q)P*' 
both I and II we have ignored the imaginary contribu- "] 
tions from the pole at x0, where pyW+Pz2(l-xo) = 0. +a2-b2+$(e-2a)-He~2h) J , (A39) 
This, however, introduces no error in I + H , since the 
L ^ l U L ? f t h G S U m °f t h e i n t e g r a n d s °f I + I I > W h i c h i s where *(*) is the Spence function defined in Eq. 

(A49). If we use exact values for a and b then this ex-given by 

lim 2py
2x-p3

2+ 
py

2x(2 — x)r 

1 — x [SfO 
is equal to 

lim r 
x-+xo |_ 

-Py^ + P^il-X) 

1 — x 
.]-.. 

Therefore, 

£ 3
2 /o-2ff 0 =— / — In — 

4 i o ^ 2 \p32\ 

From Eq. (A35) we get 

d2 trip-qVy+q'ip-q'y —^—fp 
rf 

- l 

(A36) 

(A37) 

+$l (A40) 

where 
d2=(pq')2-tn2n2>0. 

Since ^„ is the sum of two timelike vectors, it too must 
be timelike, i.e., py

2<0. We then have the following 
two cases: 

Case a. (p-q')2<0. It then follows from Eq. (A37) 
that 

\(p-~q'yy+qf(P~q')\ 

pression is exact. The approximate expressions for a 
and b come from neglecting m/ii compared with unity 
and neglecting unity compared to ~p-qf/mn, i.e., 
— p-q'/fniJ^>V2>tn/n. Applying this approximation to 
Eq. (A39) we get 

pih-2B^ LLfZ-*^ \JZll-) 
4:pq'L \ m\x J \ m\xK / 

\ M2 / \ (2pqf)2 ) \ 

Case b. {p-q')2>§. By Eq. (A37) we can let 

ttmhe=l(p-q')2y+q'(p-qf)yd. 

This leads to 

l r / U2 \ 
pz

2Io-2Ho=—\ {b'-a') lnf )+a'2-b'2 

Ul \(p-qypz2/ 

+$(-e-2a')-$(-e-2b') 1, 

where 

d 
> 1 . 

a ' - t i m h - 1 : ^ - ^ ) / ^ ] , 
bf^tztirl[p(p~q')/d~]. 

So let 
coW=l{p~q')2y+q>{p-q')yd, 

Making the same approximations as in case a we obtain 
again Eq. (A38), 

file:///JZll-
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c3 C8. 
FIG. 6. Path of integration for 
the evaluation of PZ2IQ—2HQ. 

C4 

Instead of /0 , the integral pertinent to our calculation 
is pz2IQ~2i}o, where 

Ho=~ 
d*k 

(27r)47 (k2-2pk)(k2+2qk)k2 
(A41) 

I t is clear that all the arguments used to derive Eq. 
(A36) apply equally well to pz2I0—2l}o. Hence, 

Pz2Io-2HQ=-
dy 

-In 
4 Jo &,*+« 

£,2 

(A42) 

where now 

py^py-qiX-y) 

and we have carried along the small negative imaginary 
additions to m and /x, producing the term +i8 in the 
denominator. We write 

where d2=(pq)2—m2fjL2 and 

* C v ) = C ( # + ^ - g ( # + g ) ] / ^ . 

I t is no longer true that py
2<0, in fact it is quite clear 

that py
2 has two roots in the interval (0,1). Let r\ and r% 

be these roots and let r i 0 2 . Then 

and 
Pv2== (P+q)2(y-r1)(y-r2) 

-2d/(p+q)2. r2—ri= 

We can break up the integration region into five parts 
as shown in Fig. 6. The contours c% and c± are so chosen 
as to give py

2 an imaginary part greater than zero. We 
first do the integration for regions Ci, c%, c$. In a and 
£5, I h(y) I > 1 so let coth#=h(y), whereas in cz, \ h(y) \ < 1 
so let 

tanh0=A(y). 

Then 

/ +/ +/ brH?; 
.7 0 •/ rtf-8 •/ r2+S-ipy ' £>3 

• r* r - d 2 c s c h 2 6 h 
/ In \de 

JS l(p+q)2pz2J 

l r '& 

4iL 
ln(coth0)W 

where 

tf = c o t h - i [ - ^ + g ) / < 2 > 4 ln[ l - ( 2 ^ / ^ ) ] , 

^ c o t h ^ ^ ^ + ^ / i ] ^ l n [ m 2 ( M
2 - 2 ^ ) / ( 2 ^ ) 2 ] . 

The first integral on the right is essentially the same as 

Eq. (A38). I t is therefore equal to Eq. (A39) with 
qf —» —q. The second integral 

/ In (cothfl) W = - 2 / In (tanh0)<W \dd, 
*/ _oo J —oo l_ -J 

/

x \nx 
dx^l-ir2. 

+ 1-X2 

The integration for c2 is done by letting y=r\— 8e~ie then 

1 r dy p2 

— / — I n — 
4 J py

2 Pi 

In \de, 
1~r2)Jo L fa2 J Hq+pYin-r^Jo 

S(p+q)2(r1-r2) 
•f- (imaginary par t ) . 

For CA let y=r2+8ei(e~ir\ Then the contribution from 
c2 and 4̂ together is (l/4d)(7r2/2). Upon combining all 
the contributions we arrive at 

Pz2Io-2Ho=~\ (b-d)\nl J 
4dl \(p+q)2Pz2/ 

+He~2h~-He~2t)+d2-b2+7r2 . (A43) 

If we now make the high-energy approximation, i.e., 

~pq/mjj^l^>m/iJL, 

we get 

1 r —2pq —pq /jjL2~2pq 
p8

2Io-2H0^ In —In—-+<£>| 
4pqL m\x ntfiK 

fm2{ix2-2pq)\ "I 
- $ ( — J-TT2 . (A44) 

\ Vpq)2 1 J 
Comparing Eq. (A44) with Eq. (A40) we see that the 
interchange q<-> — q' in Eq. (A40) produces Eq. (A44). 
This interchange leads to a term (In—l)2 which corre
sponds exactly to the — 7r2 term in Eq. (A44) if we keep 
only the real part. 

D. Miscellaneous Integrals 

We have given the results of some of the previous inte
grations in terms of the functions K(pa,pb) and v(pa,pb) 
defined in Eqs. (11.10), (11.11), respectively. K(pa,pb) 
contains the infrared divergence and completely cancels 
out in our calculation. We will, however, be interested 
in K(p, -q), K(p', -q'), in terms of K(p,q), K(p',q') 
[cf., Eq. (11.24)]. Comparing Eq. (A36) with Eq. (11.10) 
we readily see that K(p, —q)/4(pq) can be obtained 
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from Eq. (A44) by the substitution K—> A2/2m2. Further
more, the substitution K —> \2J2m2 and q'' —> q carries 
Eq. (A39) into —K(p,q)/4:(pq). We can therefore write 

where 

6 

ReK(pi-q) = K(pjq)+i8Kj 

= 2[̂ (̂ )̂-̂ (̂ ) 

3<a;)+$(l /s) = 2 $ ( l ) - | ln2x; (x>0) (A52) 

<b(x)+<&(l/x) = 2<S>(-l)-iln2(--x); 
(x<0) (A53) 

<!>(#)+3>(1 — x) = $(1)—lnx ln(l — x); 

( 0 < * < 1 ) (A54) 

^ ( l - l / x ) + < l > ( l - ^ ) = - | l n 2 ^ . (A55) 

APPENDIX B: ULTRAVIOLET INTEGRALS 
fm2{n2-2pq)\ /m2(n2+2pq)\ n 

_$( I_ ) + $ ( j - , ^ ( A 4 5 ) In this 
\ ( 2 ^ ) 2 / \ (2pq)2 / J of those 

section we give the details for the evaluation 
matrix elements which suffer an ultraviolet 

divergence. The usual renormalization techniques are 
I t is easy to see that K(p'tf) = K(p,q) and K(p', -qf) u s e d . We will illustrate these techniques for "scalar" 
= K(py -q). This follows directly from Eq. (A30) and electrodynamics and more or less quote the results for 
the analogous relation F0=H0. Alternatively, it can be «Spinor" electrodynamics, since the latter case is well 
seen by examining the py

2 terms entering each side of known and can be readily found in the literature.8 

the equality: They are equal. Hence, 

RetK(p,-q)+K(p',-q')l 
= K(p,q)+K(p',q')+8K. (A46) 

We next evaluate ix(paipb)> 

A. Meson Vertex Function 

e2 corrections to the single-meson corner are shown in 
Fig. 7. That is, for any diagram containing a single-
meson corner (say Mi) some of its corrections (Afs-io) 

r1 dy 
V>(pa,pb)= / — 

U py 
»q 

and py=pay+pb(l—y). We may write py
2=(pa—pb)2 

X(y+r1)(y+r2), where 

i 

FIG. 7. Scalar vertex diagrams. \ i <r vj— 

'1.2= [_Pb(pa-pb)±<f\/(pa-pb)2 (a) 
i 

(b) (c) 

and 

d2= (papb)2—wia2nib2. 

I t can then be show that 

can be gotten by simply replacing (q+q')v of that corner 
(A47) by (a/2ir)(A,,<0>+A,<»+A/c>), where from the rules of 

correspondence we get 

»(pa,pb)=-
1 (l+n)r* 

2d n(l+r2)n 

A > > = -
-2i f (2q-k)-(2qf-k)(qv+q/-2kv)d*k 

J 
i r(papb)-d-\ 

I n — . (A48) 
2d L(paph)+dJ ~(papb)+d 

E. Spence Function 

The Spence function19 <£(#) is defined by 

; l n | l - ^ | 

Jo 
-du. (A49) 

(2TT)2J (k2-2qk)(k2-2q''k)k2 

M r (2q/-kv)d
Ak 

(2TT)2 J (k2-2q'k)k2' 

4d r {2qv—kv)d
Ak 

(2TT)27 (&-2q-k)& 

If we let 

A ,«=A, (» )+A r (»+A r W 

•2i r N,Wk 

A,<» 

A 

(Bl) 

-2i r 

(lirfj (¥-2q-k){tf-2q'k)k* 
(B2) 

The following is a list of relations for the Spence function ., 
which enter this problem. The derivation of those rela
tions together with a numerical tabulation of <f?(x) are N,i") = A(qq')Qv—B(qq')k,— 2(Q-k)Q,+S(q-k)q,' 
given in Ref. 19. +S>(q'-k)q,+2k2k,,-3k2Q„. 

* ( - ! ) = - A T 2 , 

(A50) We can therefore write 

19 K. Mitchell, Phil. Mag. 40, 351 (1949). 

(A51) A,<") = - 2 ( 4 ( ^ ) ^ 0 WQ, 
-S(qq')K^-2(Q"K<,^)Qp+8(q-K^)qy' 

-8^'K.w)q,+2Lr
w-3La

wQp), (B3) 
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here 

* « . ; , > < M ) = -
{Ukv)tfk 

(2w¥J (W-2qk){W—2c(k)W 

iA2 r {\;kr)d'k iA* r 

(2x)27 (A»-(2x)2J (ki-2qk)(k2-2q'k)(k2+A2) 

(B4) 

(B5) 

We have included the regulator A2/(&2+A2) in Eq. (B5) 
which is to be considered in the limit of A2 —>co. These 
integrals are evaluated by means of the usual Feynman18 

technique of combining denominators, and the results 
are given in Eqs. (A7), (A9), (A14), and (A16). 

Upon substituting these results into Eq. (B3) we get 

A/*>( M ' ) = -<2, K(q,q')-2(qq'Uq,q') 

A2 5T 
+ln-+- . 

M2 4 J 
(B6) 

In addition to the infrared divergence contained in 
K(q,qf) we have as expected the logarithmically diver
gent term ln(A2//x2); where A2 —»oo . This is the ultra
violet divergence. The prescription for its removal is 
to subtract 

[ A , < " > ( M ) + A , < M W ) ] 

A2 5" 
= -Qv\K(q,q)-2+\n- (B7) 

Since K(q,q) is a constant, this is tantamount to a re
definition of the meson charge e; hence a charge re-
normalization. We obtain for the finite vertex function 

AFy^=-QlK(q,q,)--K(q,q)-2(qq%(q,qO + 2-]. (B8) 

We will now show that charge renormalization is in 
fact a "spurious" charge renormalization; i.e., the 
infinite term, Eq. (B7), is completely cancelled by a 
corresponding term from the self-energy diagrams. So 
consider the meson self-energy diagrams Mn_u. I t is 
clear that the infinities arising from the balloon dia
grams, Mn and Mu, are completely removed by mass 
renormalization, since these terms are proportional to 
fd%/h2 and don't contain external momenta as vari
ables. Hence all we need consider is Mn and Mn. From 
the rules of correspondence we have 

where 

Mn = Mi, 
2TT ? / 2 4 V 

« 2(g) 
Afi2= Mi, 

2r q2+fJL2 

2i r d*k(2q-k)2 
— Li r 

(2T)2J £2[(<7-£)2+M2] 

(B9) 

(BIO) 

We can expand (the regulated) 2(g) as follows: 

2(q)^A+B(q2+tx2)+(q2+^)2ZFy (B l l ) 

where A and B sue "infinite" constants and 2 F is finite. 
A can be removed by a redefinition of mass and B by a 
redefinition of charge. Using the same arguments as are 
used in the electron self-energy case, it can be shown 
that 

~iB, 
q2+»2 

and therefore after mass renormalization we get 

Mu+Mu= {a/2ir)BMi. 

To prove that we have a "spurious" charge renormaliza
tion we need show that 

QVB= -K^Kq,q)+M>W)l. (B12) 

Differentiating Eq. (BIO) with respect to qv we get 

-2i *2(q) 

dqv (2TT)' 

- 2 

H2qv-kv)d
4k 

k2(k2-2qk) 

(2q-k)2(qv-kv)d'k' 

k2(k2-2qk)2 

But from Eq. (Bl l ) we have 

d2(q)/dqv=2q„B. 

Hence Eq. (B12) follows. 

B. Electron Vertex Function 

If in Mi we replace yv by (a/27r)A„(m), where 

2i r NSmWk 

= -A,<*>(M). 

A («) = 
(2TT)2; (k2-2pk)(k2-2p'k)k2 

(B13) 

and 

i\/rv(«*) = 7 p p ( ^ ~ f t ) - w ] 7 , [ i ( ^ - f e ) - w ] 7 p , (B14) 

we get i f 5. I t can be show that 

A,<m) (£,£') = -7> K(p,p')-(W+2pp'Mp,p>) 

m2 l"1 

-*ln-
A2 4. 

+ - M ( ^ , ) [ > 3 J 7 j . (BIS) 

To remove the ultraviolet divergence we subtract 
Ay

(m)(p,p) and result with the finite expression 

-~(iPz2+2pp'Mp,p')+2l+Av^, (B16) 
where 

A, w = (m/4i)v(p,pr)(ptY,-y,pz) . (B17) 
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FIG. 8. Scalar vacuum 
polarization diagrams. 

(a) (b) 

A / A ) gives rise to the anomalous magnetic momen t and 
is negligible in our calculation.20 

C. Meson Vacuum Polarization 

T h e e2 corrections to the photon propagator arising 
from "scalar" electrodynamics are depicted in Fig. 8. 
I t will become apparent t h a t since diagram (b) is inde
penden t of k i t contributes nothing and can therefore 
be ignored. So if 

n (M)=-
2% f (2q-k)<r(2q-k)vd

4q -Li r 

2TT)2J ( 2 T T ) 2 J ( £ 2 + M 2 ) [ ( g - £ ) 2 + M 2 ] ' 
(B18) 

then the corrections represented b y diagram (a) can 
be obtained b y simply subst i tut ing in the photon 
propagator 

g„-> (a /2 i r )Cn„<^( f t ) /* 2 ] . (B19) 

B y employing the conditions of relativistic and gauge 
invariance it can be formally shown tha t 2 1 

n*/M>(ft) = 

and 
3k2 

np^)p(o)=o. 

(B20) 

(B21) 

This last condition is clearly no t satisfied, since E q . 
(B18) gives 

-2i r (2q)2d*q 
n p < * » ( 0 ) = / , 

(2TT)27 (<f+M
2)2 

which is quadratically divergent. We therefore redefine 

npW'(*) = 
~2i (2q-k)2d*q 

( 2 T T ) 2 U (q2+»%(q-k)2+»2l 

(2q)Wq-__ r iMTfqi (B22) 

which satisfies Eq . (B21) and is logarithmically divergent. 
I t is because of this subtract ion t h a t diagram (b) of 
Fig. 8 contributes nothing. We can now write 

(3k2)~1Up^^k)^A + llF^(k2), 

where A is an infinite constant independent of k and 
IiF

(fl)(k2) is finite and goes to zero with k. W e then sub
t rac t A and we have from Eq . (B20) 

H<TV^(k)=-(k<Tkv~gffVk2)UF^(k2). (B23) 

T h e te rm proport ional to kakv contr ibutes nothing, since 

20 Cf., Eq. (6) of Ref. 6, and subsequent discussion. 
21 Cf., Sec. 9-5 of Ref. 8, for example. 

i t is either contracted wi th yv and employing the 5 func
tion it gives rise to p8=0, or i t is contracted with Q* and 
employing the 8 function it leads to (q+qf)(q—^):=0. 
Hence we m a y write 

Uj^(k) = gffVk2ILF^(k2) (B24) 

and the subst i tut ion of Eq . (B19) becomes 

g„-+(a/2ic)g„IlFM(k*). (B25) 

We now re turn to the evaluation HF^\pz2). If in 
Eq . (B22) we let k = pz and q = l—q, we get 

np<">'(£8) = 2lpz2L0^ -4pfL,M+WpfS.M], 

where L ^ . v )
{ l x ) are defined in Eq . (B5) and 

i r hdH 
S>> = -

(2TT) 2 7 (l2-2lq)2(l2-2lqf) 

From Eqs. (A7) ,(A9), and (A12) 

(B26) 

l r A 
(S^VnpOO' fo )^ - in—h£ 

3L M 

V r C2 

and hence 

T Q 11 
- M ( M ' ) + — l—M^ffO 
4 ps2L 4 JJ 

Q2 4/x2r Q2 1 4 

12 3pz
2L 4 J 9 

This can be rewritten in a more calculable form by using 
Eq. (A48); 

<y+2)2 a '+K ' 4 2 
n*»(^ 3

2)= in-
6a V a'-v! 9 3K' 

D. Electron Vacuum Polarization 

For this case 

(B28) 

- 2 % r 

(27r)2i 

2i rd^pTr{ya(ip—m)yXi{p—k)—m)} 

(2TT)27 (p2+m2)l(p-k)2+m2'] 
(B29) 

After imposing the requirement of E q . (B21) we have 

-2i rr (p2+2m2-p'k) 
n/(*) = ~ f r 

(p2+m%(p~k)2+m22 

p2+2m2" 

It can be shown that 
(p2+m2)2. 

\d4p. (B30) 

n / ( - £ 3 ) 4r m 1 (p+pf)2 

-= T I n — 7 + p(p,p') 
3pi 3L A 2 

+(2M
2/pm-up+py»(p,pf)i\ 
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and finally 

+ ( 2 « V P 8 2 ) C 1 - 1 ( # + ^ ) 2 M ( ? , ^ ) ] - ( 1 0 / 9 ) . 

APPENDIX C: TWO-PHOTON 
EXCHANGE CALCULATION 

The contributions to the cross section arising from the 
two-photon exchange diagrams, M2, Mz> and Mi, are 
derived in this appendix. In Sec. I I it is shown how 
we can extract from J2 and 7 3 [Eqs. (11.16), (11.17)] 
their infrared parts. What remains is divergentless and 
is called J2° and / 3 ° , respectively [cf., Eqs. (11.20), 
(11.22)]. I t is the cross section daj arising from 
J°—J2

0+Jz°-\-J4 that we wish to calculate here. By 
taking account of the appearance of J° between the 
spinors #(p') and u(p), it is possible to express all slashed 
quantities in J° in terms of Q(s&y). We can therefore 
write 

J»±(a/*)(A+QB)9 (CI) 

where A and B contain no y matrices, from which we get 

£ M i W 2 _ 4 
spins 

a r Trr(ip—m)Q(ipf—m)l n 
= -pA B+A—^- — — £ MfMu 

T L Trl(ip-m)Q(ip,-m)Q']J spins 

I t then follows that 

d<Tj—(a/Tr)d(Todj, (C2) 
where 

dj=2pz* Re{B+Z2im(P'Q)A/To]}. (C3) 

We now proceed to obtain expressions for A and B. 
By expanding the numerator of the integrand of J3 , 
Eq. (11.17), we can show that 

J^(-aM{4Q(pqy0--2l2(pq')Y+Qf+QYqf2L 

where 

I(0:P:UP)—-

and 
— f (2TT)2 J (k2-2pk)(k2-2q!-k)(k-pd)

2k 

Pio.p) — 
(l;ky)dAk 

(2w)2J (k2-2pk)(k2-2q'-k)(k-pi)
2 

To obtain Eq. (B4) we have made use of: 

(C5) 

(G6) 

and 
J s -(!*/ir)(&(pq,)/pz*)QglJr, 

where J^J^+Jz*. 

Making use of the results of Appendix A, Sec. C, we 
get 

yvIv=irna1+{Q/2)a2, 

QyvqfIv= 2ini(n2+pq')a1 

+ QZ(?n*+2pq')a1-^a2+ (^>3
2/2)a3]. 

oil, 0L2, ocs are defined by 

/„ == aipv+a2qj+azpzv. 

Furthermore, if we let Fv—r]ipv
Jr'r]2qv

f-\-'r}zpzv and 
Gv

(fi) = gi(ti)q/+g2
(fl)psv, then it is possible to show that 

T ' ^ M - (im/tym+iQ/^Xm-gi^). 
Substituting all this into (C4) gives 

73°= (a/T){Aim(iJL2+2pqf)a1 

-Ql&W)/P*2Jpz2h-2Ho) 
+2Go^-2(^+2pq')a2-±g&^}, (C7) 

where we have eliminated a\ and a3 in the coefficient of 
Q by means of the relation A#a/=/». This relation 
follows from Eq. (A26) where the quantities A# and 
fi are defined. 

I t is easy to see that J2° can be obtained from 73° by 
an interchange q<-> —q'. We therefore have 

/ 2 o - ( a / T ) { 4 ^ ( M 2 _ 2 ^ ) ^ 1 _ < ? [ ( 4 ^ / ^ 3 2 ) ^ 3 2 / 0 _ 2 i ? 0 ) 

-2G^+2{}x2-2pq)d2+hgi^~]}, (C8) 

where the "hooded" quantities are to be obtained from 
the same "unhooded" quantities by the interchange 
q^-q'. 

From Eq. (11.18) we can immediately write 

J 4 = {a/ir){UfnG^+±yvGv^} 

or by Eq. (A22) 

J 4 = ( a A ) { 4 ^ [ G 0
( w ) + g i ( m ) ] } , (C9) 

where 

gl(m) = [ K / ( K +2)] [G 0
( m ) +( l /4 K ^ 2 ) In2jc]. 

Collecting terms from Eqs. (C7)-(C9) we get 

A = iiml(ti
2+2pq')a1+ ( M 2 - 2pq)d1+G0

<-m'>+giim)l, 

-B=(4pq'/p3*Xpi*Io-2H0)+(4pq/p32Xpz2fo-2fio) 
-2(ixi+2pq')a2+2(^-2pq)d2. 

ai and at are evaluated and listed in Eqs. (A28) and 
(A29). We have already mentioned that di and &% can 
then be obtained from ai and «2. Hence, after some 
straightforward but nonetheless tedious algebraic ma
nipulations, it can be shown that Eq. (C3) yields 

Sj=-4 C^32Go ( m ,+2/»g'( />32 /o-2Ho)][l+(^3
2(M2+2^')/^o)]-l>32Go ( ' r e )-2^(^3

2 /o-2i?„)] 

XZl+W(j*-2pq)/T0)l-
2(pQ) (pi+2t?)piGaM 4w2(^)^3

2(Go ( m )+gi ( r o )) 

To -+ (CIO) 
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We have made use of the easily derivable result 

D=6=(mV2)032+V)-|r0, 
where D is denned in Eq. (A27). 

Equation (CIO) is exact. If we now neglect terms of order m/S' compared with unity we get 

1- ^V+W)l | ln2( )+2*( ) + — 

V/c'+lxr a'-n' 
-f ) ln2/<'m \-$(a'-K')-$(-a'-K')-7r2 

fn2-2pq\ 4TT2" 

3 . 

2{pQ)pi(Kf+h 
, (Cll) 

where K' = ^3
2/2M2 and a'=(*'2+2K')1/2. To obtain Eq. 

(Cll) we have: ignored the last term of Eq. (CIO) since 
it is smaller by a factor m/8' compared to what is kept; 
used Eqs. (A40) and (A44) for (pz

2I0-2H0) and 
(£3

2/o-2i?0), respectively; used Eq. (A19) for pz2G0
(,i); 

and finally for pz2G0
(m) we have approximated the result 

of Eq. (A20) by 

pz2G0
(m) = -i[ln2(^32/w2) + (2TT2/3)] . 

&(x) is the Spence function defined in Eq. (A49). Since 
for small x> <£(#)~x, we have consistently thrown away 
$(fn/8;) terms. 

APPENDIX D: SOFT PHOTON INTEGRALS 

The basic integral required for the evaluation of 8S 

(111.16) is 

then 
1 r* zdz / l -

np,pa)-%K(p,pa) = — J : l n ( -2vaJ0 1 — z2 \ 1 + 

vaz\ 

vaz/ 

1 fz dz f\-vaz\ 
= — / In ) , 

kVaJ-s 1 — Z \1 + Vaz/ 

I(p,pa)-iK(p,pa) = —{ ln( In 

AvaL \l-z/ \l+va/ 

( 2va \ f~2va\ 

\l+vj \l-vj. 
where ^=co/[co2+X2]1/2 and in performing the last step 
we have let X —> 0 wherever possible. We now make the 
high energy approximation, 8a^>fna, hence £ac^|pa | 
+ (ma

2/2<ga).Then 

I (p. 
1 /•« k2dk r 

Aw Jo [>2+X2]W 

(papb)d&k 

(pak)(pbk) 

+ iK(pa,Pl>). (Dl) 

If /2co\2 fma\ 
I(p,pa)-mp,pa) = -{ln(--) In — 

41 \ X / \28J 

We have separated the anticipated infrared term 
K(pa,pb), denned in Eq. (11.10), and consequently 
I(pa,pb) is divergentless. 

We first consider the simplest case, i.e., pa^pb^p-
Then Eq. (Dl) becomes 

+$(!)-$ 
r /2S«\* 

:J] 
By arguments completely equivalent to those of Ap
pendix A, Sec. D we can show 

Hp,P) 
Jo 

k2dk m m 
-f-ln—= l-+-ln—. (D2) 

o [F+X2]3 '2 X 2w 

Next consider the case pa^p\ pb=p> Then the first 
term is 

1 r»kdk /l — Va(k/ca)\ 
I(p,pa)-hK(p,pa) = — -—lnf- — — ) , 

2vaJo co2 \l+va(k/G>)/ 

where va=\pa\/8a. If we let z=k/w=k/lk2+\2J/2, 

/26«\ 26'0 / X y / 2f»6«\ 
K(p,pa) = \n2[ - I n In - +<i> 1 . 

\ma/ ma \m/ \ ma
2 I 

Combining these results and making use of Eqs. (A53) 
and (A55) we get 

co ma f m \ 
I(pypa)~\n— In } In2 ) 

8a 28 a \28j 

+i$(l)-
/ m2 \ 

ffll 
\ 2m 8 J 

(D3) 

file:///l-vj
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Finally we consider pa^pT^pb. I t is shown in Ap
pendix C of Ref. 13 that 

where py=pay+pb(l—y) and 

PyQ—\py\ , /PyO+\py 
Gab — ~ 

\Vy\ i /PyO+\Py\\ /pV0+\Pv\\ 
-— lnf 1+2 lnf ) 
y\ \pyO-\Vy\y \ 2py0 J 

This is exact. We now make some approximations. Both 
pa and pb are highly relativistic and both point in ap
proximately the forward direction. Therefore py is 
also relativistic, i.e., (pyo—\Vy\)/pyo is of the order 
fnamb/SaSb<Kl. This shows that we can safely neglect 
Gab in the above. Therefore 

f1 dy /py0\ 
I(pa,Pb)=(paPb) — l n f — ) . (D4) 

JO py2 \ CO / 

The y integration is trivial for all but the following 
three cases: 

pa=q or q']pb=pf and pa=q\pb = qf-

In the first two cases py
2 has the form ay2+by—m2. 

Hence if we rewrite Eq. (D4) as 

I(pa,pb) = (Papb)\ M (pa,pb) ln-
8b 

r'in{l+cy) "1 
+ / — : — d y > 

JO Py2 J 

(D5) 

where ti(pa,pb) is evaluated in Eq. (A48) and 
c=(Sa—Sb)/Sbl we can approximate py

2 by ay2+by 
in the second term. That is, the contribution to I(pa,p

f) 
coming from small y is almost completely contained in 
the first term. The error introduced by this approxima
tion can be estimated by the difference in the integrands 
at y— 0 times the distance over which the denominator 
is comparable to m2, i.e., 

(p'-pa)c m2 m 
X — ^ 

b b energy 

and is seen to be small. We may write 

rldy\&(\+cy) 

Jo ' o ay2+by 

) / • > l n ( l + c y ) - | 
-ay— / dy , 

Jo (v+b/a) J 

I f f1 \n(l+cy) r1 ln(l+cy) 
ty— / -

y Jo (y+b/a) 
(D6) 

which can be expressed in terms of Spence functions by 
employing Eq. (D8). 

In the last case, where pa—q\ pb—q', we have 

py2=-^L2Kfy(l-y)+l'], where /c' = £3
2/2/z2. 

The change of variables to z—2y— 1 then converts 
Eq. (D4) into 

r(2E-8')+g'z-\ /K'+1\ r1 dz r ( 

2co 

and a'= (K ' 2 +2/< ' ) 1 / 2 . We rewrite this as 

\a'-K'J 

K'+1( 2E-& /a'+K^2 

J ( M ' ) = lln-
2a' 2co 

Xln[l+ —l&l . (D7) 
L 2E- <§'J J 

This last integration can be expressed in terms of Spence 
function by means of Eq. (D8). 

We need to evaluate the following integral: 

r1 \n(l+cy) r 
/ — - ~ d y -

Jo y+r Jr 

1 + r l n ( l — cr)+cy 
•dy. 

' o y-fr j r y 

We have let y —> y—r. If we further let y= [(1—cr)/c]z 
we get 

Jo 

\n(l+cy) /\+r 

y+r ' \ 

l+r\ 
dy=ln\l-~cr\ ln( 1 

/ ( 1 + f V /{l+r)c\ / re \ 

APPENDIX E: HARD PHOTON INTEGRALS 

In this section we evaluate the integrals which appear 
in Eq. (111.51) 

Os2)2 rAE r dy r2*d<p 
^„ ( i ) = / coJco/ / 

2T0 J« JE-\q\ |Q—k| Jo 2TT 
-Aa™ (El) 

for all the Aa
w listed in Eqs. (III.29)-(IIL49). y is the 

same as in Eq. (III. 14) and is defined by 

y=-g . Jb /w = E . - | q | c o s 0 , (E2) 

and y is given in Eq. (III . 15). Throughout we shall 
assume that 

y^>m and S'+AE<8 max • (E3) 

These conditions, as can be seen from the discussion 
following Eq. (III.12), are equivalent to Eq. (111.12) 
and, in fact, have already been invoked in the derivation 
of Eq. (El) . Furthermore, in evaluating Eq. (El) it 
shall be our practice to neglect terms of order unity. 

In order to perform the <p integrations it is first neces
sary to explicitly exhibit the <p dependence of Aa

(i). To 
achieve this the following relations, derivable directly 

file:///pyO-/Vy/y


RADIATIVE C O R R E C T I O N S TO n-e S C A T T E R I N G 

from the geometry of Fig. 3, will be used: 

pf -k= —u(u—v cos<p), 

qf'k= —u(a-\rv cos<p), 

qz2 = b+ccos<p, 

(E4) 

u=&'—\p'\cosd cosfy+rj), 

v= I p' I sin0 sin($+77). 
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(E8) 

where 
a=y-\-m—u, 

b = p%2-\r 2moo — 2o)U, 

c—2ojv, 

(E5) We can express u and v in terms of y by means of 
, * Eq. (III.7) and the relation 
(Eo) 

cos(*+i;) = ( E - c o - y ) / ( | q - k | ) , 

which again follows directly from the geometry of Fig. 3. 
^ •' The following table of integrals can be seen to have 

relevance to our problems: 

1 r2* a' 

2ir J 0 a 

2*a'+b'cosy bf a'-a(b'/b) 
dy = -

+b cosy b [_a2—&2] 

1 r2« a'+V cosy aa!-W 

\ T^—-dy 

Jo (a 

1/2 

2TT 

1 r2* 

2w J 0 (a 

+bcosy)2 ta2-b2Ji2 

dy ab 

(E9) 

(E10) 

2TT JO (a+b cosy)2(a'+b' cosy) {ba'-ab,)[_a2-b2~} 3/2 

1 r2lr 

2ir J Q 

dy 

1 r2ir 
(•IT 

Jo (a-

0 (a+b cosy)2(a'+b' cosy)2 (b< 

dy 

v r 0 v -\ 
, (EH) 

( 6 a ' - ab')2\-[a2- b2J» [ V 2 - b'2J'2 J 
1 r b2a bt2a! 1 

" (baf-ab,)2L(a2-b2W (cP-b*)**! 

(& 

26ft' r 

a'-abfyL(a' 

V 

)3L(a2-52)1/2 (a'2-b,2)li2 

V2 

] • 
(E12) 

2TT JO (<*+& c o s ^ ^ ' + y cos;y)(a"+&" cosy) (a%-b'a)(a"b-V'a)(a2--b2Y2 (ab'-ba')(a"b'-b"a')(a'2-b'2yi2 

b"2 

(E13) 
(abn-ban){a!bn-b'an)(a',2-bn2Y2 

From this table one can already see the advantage of defining 

Dp> = (q-k)2(u2-v2); Dqr = (q-h)2(a2-v2); D=(q-k)2(b2-c2). 

Dp>, Dq', and D are, of course, functions of y. 
Some straightforward manipulations then yield 

DAy) = LHE+m)-(y+m)(S,+^)J+m2lq2-(E-y)22, (E14) 

A Z ' 6 0 = [ ( £ - S H - W ) 2 - M 2 ] / ^ (E15) 

Z>60 = 4 { [ w ( S ' - m ) | q | - c o ; y ( S ^ (E16) 

After having performed the <p integrations the resulting integrands of Eq. (El) are algebraic functions of y. 
That is to say, the y integrations are never that complex so as not to be found in any standard table of integrals. 
However, the performance of the y integrations leads to unwieldy expressions and the problem then is to reduce 
these expressions into a manageable form. The following properties of Dp>(y) and Dq>(y) aid in performing this 
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reduction: 

has a relative minimum for y equal to 

m(E-&'-u) 'mE(E—&')-y?S' 
yp> = , yQ'==~m-{ , 

g'+ai+nt (E-gy 

and the value of the function at this minimum is 

r {E+ntfi&'+u-m)-! [_{E+m)E{g,-m)-i\2g,J 
m2q2-

L S'+u+ni J gf2+q2-m2-2(gf-m)(E+m) 

which is approximately equal to 

[nt2/{&+u)J_2?nE{E- <r-co)-M
2(<S'+u)], \jj?6'/(E- &)2J_2mE{E- «')-/**«']• 

At y=E— |q| the function has the value 

[ m ( £ + m ) ~ ( E - | q | + m ) ( ^ + c o ) ] 2 , [ ( £ - |q| +m)( |q | + (T)-w(£+w)] 2 . 

By expanding about the minimum 

DAy)=DAyp>)+(y-yp>)K&+o>)2, DAy)=DAyq,)+(y-yq,)
2{E-gfy} 

we can approximate the value of the function at y=y as 

where we have made use of Eq. (E3) in the last step. 
To illustrate how these properties are used in a typical y integration, consider 

r dy 1 r b -||* 

JE-wLDAy)!112 <1/2 LL 2^J I J H q i 

where 6 and c are defined by Dq>(y) = a+by-{-cy2. Then — b/2c=yq> and we write the argument of the log function 
as [pq'(y)~]l/2+cll2(y—yq>). At the upper limit this is approximately 2y(E— 8'), where we have used c1/2~(E— <§')> 
and at the lower limit we have 

(E 
r mE{E-Sf)-lx

2&-\ 
-\q\+tn)(E+g')-mE+(E-g')\ E-\q\+m \ = 2(E-\qL\)E+ 

L (E- (SO2 J 

mE(E-S')-n2S'-] tfg' »2E 

(E-sy J 

dy 1 2{E-gJy 1 r r 2 ( E - 5 0 " 

(E-gf)2 J £-<§' £-<§' 
Therefore 

/•* dy 1 2{E-&Yy 1 r r2 (E -6 v )Tw- | 

./*-.«, r^(y)i i / 2 —JS-5' n M8£ ~E-& nLL u J J ^_,q|[^W]1/2 E-S' i?E E-& 

We are now prepared to tackle the integration of Eq. (El). For i— 1 we have: 
(la) a=q2. Aq^

l) is independent of <p and 

J E-\q\ 

dy 1 r 1 In 2E 

3/2[q2+co2-2coE+2o)y]1/2 £ - J - £ - | q | yl /x2(E-co) 

Therefore, (lb) a=q'2. Employing Eq. (E10) (with a ' = l and 
E fAE [T0+4:fna)(pd

2+4:pq+2MQ))']du ft' = 0) for the <p integration we get 
i*™ 

or 09,>(1) = 

^8^1' = ln(w/A£)+0(A£/£). (E17) 

I? raa(ka f» n(y) 
/ — / dy, 

2 Jz co JE-\*\[.Dq,(y)Jl* 
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where Dq'(y) is given in Eq. (El5) and 

n(y) = (q—k)2a 

— oiy2 + [q2—uE — ( 8'—m) (E+co+m) ~\y 

+ (<§'--m)[_yL2-\-mE—o^m~}. 

The y integration although cumbersome is straight
forward. I t yields (upon neglecting 1 compared to y/m) 

n dy 2 / co \ 
/ n(y) — ( l - ) . 

Therefore 

^^«ci> = l n ( « / A E ) + 0 [ A £ / ( £ - « ' ) ] • (E18) 

(lc) a — qqf. This time Eq. (E9) is relevant to the 
<p integration. The required y integration is then 

n dy 1 / < z ' + A 2 

JE-wy[_Dq,(y)Jli~W \a'-Kf) ' 

where a'= ( K ' 2 + 2 K ' ) 1 / 2 and Kf = ps
2/2fx2. This result again 

neglects m compared to y. Finally we find that 

- 2 ( / c ' + l ) r co /O'+K'\ 
^Q> (1) = I n — l n f J 

a' L AE W-K'J 

/AE / a ' + A \ - i 
+0(Tlnfc))]' (E19> 

(Id) a=q; a=qr; a=l. The pattern is clear so we 
simply state the results: 

/AE\2p,2(fx2+mE) //2E\2 co \ 

/ AE \pi{pi+2tf-2mE) 

\E-S'J To 

xln([^-]^)' (E21) 

4^= (AE/E)[8'/2{E- <§')]. 

These can be seen to be of order unity and are negligible 
in our calculation. 

I t is clear from the preceding that if we expand the 
integrands of gaw as (l/oo)Za+b(u/E)+c(a)/E)2-{ ] , 
then only the first term contributes to the integral; the 
rest are of order AE/E. That is, we could have neglected 
k everywhere except in the denominator terms (q-k) 
and {qf -k). Moreover, in these leading terms the y inte
gration never depends on the upper limit y. That is, we 
could have taken as our region of integration the iso
tropic region of radius AE. But this is precisely the soft 
photon approximation, where now AE replaces co. We 
therefore see that the soft photon approximation is 

valid for all photons emitted by the heavier particle. 
I t then follows that the net effect of adding #a

( 1 ) to the 
corresponding terms in the soft photon cross section 
should be to replace co in those terms by AE. This is so. 

We next turn our attention to i== 2. 
(2a) a=p2. Upon employing Eq. (E10) for the <p 

integration, there results 

(pz2)2 rAEda> r* (q -k) 2 (ba ' -cV) 
V ( 2 ) = / — / dy, 

2T0 Jz co . /*_„ , ZD(y)J'2 

where D(y) is given in Eq. (El6), & and c are defined by 
Eq. (E8) and 

af^ -T0-^coy(pz
2-AmE+2cDy)~^u(ix2+2mE-2o)y), 

V^4:uv{ii2+2niE-2uy). 

The essential contribution to this integral comes from 
small values of co. This is true for two reasons: First the 
1/co term which appears explicitly in the integrand, and 
second since D(y) has no sharp minimum in the range of 
y integration the result of this integration is something 
nearly proportional to y (actually to y—E+|q|), i.e., 
to 1/co. The second reason is more important in that it 
has application to later integrals. Then in seeking the 
leading terms of the numerator (q—k)2(tV—cb'), we 
treat co as negligible compared to a typical energy and 
co;y as comparable to mE. This leads to 

(q-k) 2 (cV-ctV) = - 1 6 S ' ( E - 8')(fnE-a>y¥a)(y-y). 

In the same spirit we can rewrite Eq. (E16) as 

D{y)~[2&{niE--oiy)y. (E22) 

Then if we let z=a>y and z=ooy= T0/Sm(E— <§')> we get 

m rAE do) r2 z—z 
V ( 2 ) = / — / dz. 

21 Jz co2 Jc»(E-\q\) mE—z 

We do this integration and get 

^ 2 ( 2 ) = 1 + l n ( \ I 
2wL To \2mE(E-8')/J 

A moment's consideration shows that the soft photon 
approximation is poorest when applied to I(p,p), the 
term corresponding to 3P^2). To improve this we can 
let e replace co in Eq. (III . 18), where e<<Cco and add to 
0P*(2) the term 

m r" do) rE+\*\ z—oy 
/ — / dy. 

2zJ€ co J E-\q\ mE—oyy 

The net result of performing these operations is found 
to be identical with the result obtained by simply re
placing, by 1, the coefficient m/2cb in the above expres
sion for #p2(2). We therefore write 

r 4WM 2 5 ; / v?8' \ - | 

V(2)=H !+ ln ) • (E 2 3) 
L To \2mE(E-&))A 
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This can be seen to be of order unity and is negligible in (2b) a=p'2. With the aid of Eq. (E12) we can show 
our calculation. that £̂ »<2> = (I) + ( I I ) + ( I H ) + ( I V ) , where 

m2&2 ~AE ^ [ r 0 _ 4 w c o ( M
2 + 2 w E ) ] fy ( q - k ) % 

( I )= / / dy, 

(II) = 

a>(8'+a>y J E-^lDAy)!12 

m&2 rAE do>[To-kmu(y2+2?nE)~] r* dy 

po h (S'+o>)z JE-To h (S'+a>y JE-w\lDv>{y)Jl* 

^m2gf2 [*EO)da[T0-4*no)(fi*+2mE)'2 [» [ m ( £ / + a > ) - a ^ ] ( q - k ) 2 

(III) = / / dy, 
To h (S'+o>)2 JB-W LD(y)Ji* 

2mg>2 [M a)da>ZTo-4:fna>(fx2+2fnE)~] [" dy 

(<S'+co)* JE_lq{ [_D(y)Jl* 

The y integration in (I) is arduous. I t can, however, be (III), (IV) are done. That (I) is the only surviving term 
shown that could have been guessed at from the start. For if we 

/ jx2 2f assume that the essential contribution to £fP'
(2) comes 

-dyc^ from k||p' [because of the (p'-k)2 in the denominator] 
/ " 
J E-

]E-W\ [Dpf{y)Ji2 m 2 (£ ' )+w then in qz
2 we can let k=cop'/8', i.e., 

Dp>(y) has a sharp minimum at qs2 = pz2—2k(p—p!)=-p•?{_(&'+<*)I&'~}. 

y=m(E- S'-a))/(8'+a)+m) This leads directly to (I). Therefore 

and the above result depends on the condition that the rAE da/ & \ 3 r 4ww(/x2+2w£)~| 
y integration region contains this minimum. This con- #P ' s ( 2 )= — / —( — J 1 
dition is identical with the condition (E3) which is as- Jz>o)\8 +a>/ L To J 
sumed to obtain. Furthermore (II), (III), and (IV) are a n d l e c t i t e r m s o f o r d e r u n i t w e t 

all of the order m/& . This will become more apparent 
in the next case (2c) where the y integrations of (II), 3p>*Wc^dno)/AE. (E24) 

(2c) a=pp'. Applying Eq. ( E l l ) to do the <p integration we get 

8'3 r^B da 
0„.w = — / (A+B), 

T0 h (<S'+co)2co 
where 

n N(y) rv YV 

^= / r^dto> 
JE-\q\ [Dp' 

re 2N{y) r 4m(<g'+«)(q-k)20»(<S'+co)-cow)-
B = / _ , ,_ , . , 1+ >= r fi 

'*-!«! C ^ ) ] 1 / 2 L D(y) 

N(y) = T0+2ay(pi
i—4mE+2(ay). 

I t can be shown that 
N(y0) /2(<§'+co)^\ 2ccy 

ody, 
(E25) 

A=—^-\n{- — ) + -[uy-2m{2E-&')-], 

where yo—m(E— &f—u))/(&f-\-a)-\~m). To evaluate B we first pick out the leading terms in a manner analogous 
to that used in 3P^2) [case (2a)]. Then 

To+2z(pz
2-±niE+2z)r mE 

5 = / 1 + & , 
•/«(#-iql) &'{mE—z) L mE—zJ 
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which integrates to 

1 \lT^-^m2E{E-8f)~]z 
-(4m2£2-T0) ln( 1—— )+2z[2m(2E- 8')-z] 

\ mE/ (S'+col mE—z 

The last terms of A and B cancel completely. With the aid of the relations 

v3 1 1 8' 8'2 

c o \ £ ' W W CO <S'+CO (<S'+Co)2 (<S'+Co)3 

r 2<S' E(E-3S') E28' n 
y0(mS,-2mE+^yo) = m2(S,+o))\ 1 , 

L S'+co (£'+co)2 (<S'+co)3J 

we can do the remaining integration. We finally get 

4w2E(£-3£ /) 
4pP>i2) 

AE 1& AE / - A £ \ f^m28'2 \ /4m2 £'2 1\ < 
= 2 In—In J i n 2 — + £ ln£-$ )+ 1 Vi—( H--)/*— 

co w c* \ <§' / \ To / \ To 2/ 3T0 

m2£2 rT 0 -4w 2 £(E-(§0 /4w2£2 \ / M
2£' \ 1 AE 

14+ + ( l j lnf ) I n—, (E26) 
To L 4w/z2<S' V To / \2mE(E-S')/J u 

where 
£= <S'/(<g'+A£); U=2 ln(2«7i»)-ln(A£/«)-ln{; 

/ != ( l -£ ) ( i2+2)+{ ln{ , 

7 2 =( l -$ 2 ) ( i ?+ l )+? 2 l ng+( l -g ) , 
/ 3 = ( l - a ( ^ + ! ) + ^ 3 l n J + ( l - Q + K l ~ ^ 2 ) , 

/ 4 = ( l - ? 4 ) ( ^ + J ) + f 4 l n ? + ( l ~ Q + K l - ? 2 ) + i ( l - ? 3 ) . 

The last term of Eq. (E26) comes from B\ the rest from A. 
(2d) a=p. This case is not very different than case (2a) and analogous considerations lead to 

2m rAE do) Cz m(z)dz 
V2)=-

J a CO J u(E-T0 J„ co y«(^-|ql) (mE—z)2 

where 

m(s) = 2(E-<§022-(4m£2-6mE<S/~M2^02+2m£(2wE2~3mE<S'-M2<S0. 

Upon performing this integration we get 

rmE{E-8f) pz
2{n2+2mE) / tf8' \n /AE\ 

V 2 ) = - + ml ) ln( — ) . 
L ix2& To \2mE{E-8,)JA \ S> J 

(2e) a=^p'. Following the same procedure as in case (2c) we can show that 

8'2 rAE dco &* r dec 
*•<» = — / (A'+B'), 

To J73 (S'+co)2 

(E27) 

where Af and Br are the same as A and B (E25) with N(y) replaced by M(y) and 

M(y) = TQ-^m28\3E~8f)+2mo^Am&-lx
2-

However, since in this case we have one less power of co in the denominator compared to case (2c), we need only 
consider the leading term, i.e., the term corresponding to the first term in A. Using the expansion 

8'2M(yo) -pi(ix2+2niE+2ni8f) 8' (\ Sm28,2\ 8'2 \2m2E8' 8'z 4m2E2 £'4 
6' / l 8w*6'z\ < 

?'+co)2 \2 To 1(8' (<S'+co)3T0 To (<S'+co)2 \ 2 To /(<S'+co)3 T0 (S'+co)4 T 0 (£ '+co) 5 ' 
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we get 
-pi2(jH*+2mE+2mS') /4w2<§'2 1\ 4m2ES' m2E2 

a* (2) = /i+( + - )/t —h+ 1 A , (E28) 
To \ To 4/ To To 

where Ji, 12,13,14 are given below Eq. (E26). 
(2f) a— 1. It can be shown that 

AErmE(E-8') ±ni2E{d>E-8') / M
2<S' \ 1 

*!<» = — ln( ) . 
EL fx2Sf To XlmEiE-S'yA 

This is of order unity and negligible. The reasoning used in the previous case to allow us to disregard all but the 
leading term is applicable here to anticipate this result. 

Finally, when i=3we have: 
(3a) a—pq. We use Eq. (E9) to perform the <p integration and get 

p£E rABda> r* dyr fJ
2+2mE To+(p£+2mo))(tM

2+2mE)-
$pam- / — / H 

To J3 co JE-KH yL(q2+a>2-2a>E+2wyyf2 [P{y)Jl2 

The y integration, neglecting terms of order AE/E, yields 

To f2E\2fu\ To+pz2(ix2+2mE) ( ix28' 
lm 

piE 
Therefore 

AEr (2E\2 AE / p£{lx
2+2mE)\ fJ

28/ 

>vo. 

/2E\2/co\ T0+Pz2^2+2mE) / »28' \ 

\ M / W p£E \2mE(E- &)) 

AEr /2E\2 AE / p£(fx2+2mE)\ n28' n 
l n _ ln( — ) - J In ( 1+ J In , 

co L \ /x / co \ To J 2mE{E-8')A 

(E29) 

(3b) a=p'q'. Upon doing the cp integration with the aid of Eq. (E13) it is found that 

mES' rAE[To-2nm{p2+2mE)l 
W 3 ) = / (Fi+F2+F,)&>, 

where 
dy 1 / (2EJ H dy 1 / (2E)Z \ 

Fx= / = ln( ] , 
JE~\q\ {y+w)[Pv>{y)J12 mE \fx2+2mE/ 

r* dy 1 /fi2~2mE\ 
Y2= / = In ) , (E30) 

rv cody r 1 2co ~i 
¥S=J*.,,, l{m&')-uyt.lDAy)J';~i.D{y)Jlil' 

From Eq. (E1S) and Eq. (E16) we can show that (2oo)2Dq'(y) = D(y) for y—mSr/co. Moreover, since Dq>(y) has a 
sharp minimum at yc^—m, we can safely make the estimate 

/

dy 1 r dy 1 r dy 

(mg'-<ay)ZDg*(y)Ji2 {_Dqf{m8'/oi)Jf2 J m&'-uy tn(6'+<a) J lDq,(y)Ji2' 
Furthermore, from Eq. (E22),[it follows that 

/

dy 1 r dy 1 r dy 

(mS'-wy)ZD(y)Jl2~~ ZD(tn87o>)J12 J (mS'-uy) m(E-8f)J [D(y)Ji2' 

Therefore, 1 fy dy 2co f* dy 

co r 2(E-8f) co / M
2£' \-i 

2 In In ln( ) , 
')(£'+co)L M co \2f»E(JS-5 / ) /J 

cor 1 ry dy 2co r * <£y " 1 
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It can be shown that the contribution to #P'g'(3) arising from this term is approximately 

which in spite of the large logarithmic terms is still of order unity and hence negligible. From Yx and F2 then we get 

2£r AE / pz
2(fi2+2mE)\ n 

tfpV<»= - 2 In— In—+( 1+ ) In? . (E31) 
jJL L 03 \ To J A 

(3c) oL=pqf. Equation (E13), with a"= 1 and &"=0, is used to do the <p integration. We get 

m&'(E-&) r*Edo> r* T(y)dy r 1 2co 
d ,(3) = -

To 

r^Edo> r« T(y)dy r 1 2co n 

J s co A - u i {m8'-uy)l{_Dq,{y)Jl2~[P(y)Ji*\ ' 

where T(y) = T0-i-2uy(pz2+(ii—2mE). If we now exploit the strong resemblance borne by the integrand in Yz, 
Eq. (E30), of the previous case to the integrand here, we can immediately write for the y integration 

l r 1 r* T(y)dy 2co r« T(y)dy 

mlS7^ ;*_,„ [DAy)J12 E- 8' ./*_„, £D(y)Ji> 

1 r r/2(E-8')\* £>-] (mE\ 
- r(y0) In ( ) - \-T( — ) In( ) 
?')L LA M / wJ \ co / \2mE(E-S')Jj m(8'+u)(E-8')l 

where yo represents that value of y for which Dq>{y) has a minimum and y^t—m. Consequently, 

AE 2{E-8') AE ( 2mE{p£+i?-2mE)\ / M
2«S' \ AE 

>pq' 

AE 2 ( J E - 6 " ) A£ / 2mE(p?+n*-2mE)\ / M
26" \ AE 

w = 2 In— In 1 In2 1 1+ ) ln( ) In— . (E32) 
« M w \ To J \2mE{E-8f)J « 

In this result we have neglected the term 

) - ] , [ - , / 2 ( -E-« ' ) \ ^32(^32+M2-2m£)n r /2(E-8')\ /AE\ 
1+ (lnd 21n( 1-lnf— J 

which is of the same order as the contribution to d^q'^ [in case (3b)] arising from F3, i.e., of order unity. 
(3d) a=p'q. Here, as in the last case, Eq. (E13) is again applicable to the integration dip. Accordingly we get 

m& rAEdo>(E-S'-a>) 
#P>q

(z) = / [To+2m<*(pi-bmE-tf+2mu)J_D1+D2~\, 
To Ju o)(S;+co) 

where 
r* dy r* 2ccdy 

D1~- ' ~ ' 
ry dy r* 

i = / ; A = / 
^-kiyC^Cv)] 1 7 1 JE-wylD(y)J» 

By using Eq. (E22) for D(y) it is easy to show that 

mES'L L \ > / coJ \2mE{E-8')J. 

and therefore its contribution to 8p>q
m is given approximately by 

-lnC21n(2£/M)-ln(A£Ao)] ; 

which we neglect. Z>i is more complicated. However, if we neglect m compared to y it can be reduced to 

Di= [l/m{E- S'-co)] ln [2(£- &'-w)/M]. 
The co integration then yields 

( AE 2{E-8') r ^ 3
2 (M 2 +6W£)- | 2£l 

V 9
( 3 ) = 2 In—In + 1+ Inf In— . (E33) 

[ 0) jJL L To J Jli J 
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(3e) a=p. Equation (E9) serves to do the <p integration. We next require 

pz
2(fi2+2mE)+2mE(2mE-jj2+2mcc)--2pz

2ojy 2mE 

f dy 
lD{y)J'2 | q - k | 

pzV+2mE(2mE-fx2+2mo)) , 
ln[ 

\2mE(E-&)j 

pz
2fj2+2mE(2mE-fx2+2mo)) / M

2£' \ 

To \2mE(E-6')/' 
This leads directly to the result 

/ix
2pi+2mE(2mE-tx

2)\ AE / fx2Sf \ 
V 3 ) = ~ f — ) I n — lnf ) . (E34) 

\ To ) « \2mE(E-Sf)J 

(3f) a=p'. The <p and resulting y integrations are analogous to case (3d), whence we get (neglecting order unity) 

& fAE do> r 2(S'+a) oT $ C8)= / P ( y ) 2 In ln-
ToJ» (<§'+co)2 L m a 

where 
P(y0)=pz

2(pz
2-4mE)+2mco(3pz

2~6mE+4:m^)+2a^^^ 

With the aid of the result 
P(yo)/(8'+o>)2= (2fn)2-Z8tn2E/(S'+G>)l, 

we get 
r4tmEpz

2r / AE\-\ (pz
2)2 AE n 

"a)=-[-fA* lnm(-y)]+17 TCB-I-heJ' (E35) 

(3g) a=q;a=q';a=l. Since these cases resemble closely enough some one of the preceding cases so as to make 
the technique for their evaluation self-evident (and their contributions are anyway negligible), we simply state 
results: 

AE 12m2E2 fx2Sf 

^(8) = in_ 
E To 2mE(E-S/) 

. . . 21n— 
EL To JL ix co 

AE r(2mE-pz
2)2-2fM2(3mE-pz

2)Y 2(E-&) AE~] 

AEr (4wE-^ 3
2 ) (4mE-M 2 )n r 2E AEn 

cfg(3) = — | i + [J 2 In In 

AE r(2ME-pz
z)2-2tf{3mE-pz*)-vr 

J- «'L To JL 
g 0) = 2 In I n — , 

£ - S'L To JL M co J 


